Cargando…
Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples
The scope of this research lies in the combination of pre-trained Convolutional Neural Networks (CNNs) and Quantum Convolutional Neural Networks (QCNN) in application to Remote Sensing Image Scene Classification(RSISC). Deep learning (RL) is improving by leaps and bounds pretrained CNNs in Remote Se...
Autores principales: | Zhang, Zhouwei, Mi, Xiaofei, Yang, Jian, Wei, Xiangqin, Liu, Yan, Yan, Jian, Liu, Peizhuo, Gu, Xingfa, Yu, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537394/ https://www.ncbi.nlm.nih.gov/pubmed/37766063 http://dx.doi.org/10.3390/s23188010 |
Ejemplares similares
-
CLRS: Continual Learning Benchmark for Remote Sensing Image Scene Classification
por: Li, Haifeng, et al.
Publicado: (2020) -
Land Cover Classification of UAV Remote Sensing Based on Transformer–CNN Hybrid Architecture
por: Lu, Tingyu, et al.
Publicado: (2023) -
Adaptive Discriminative Regions Learning Network for Remote Sensing Scene Classification
por: Tang, Chuan, et al.
Publicado: (2023) -
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020) -
Semi-supervised bidirectional alignment for Remote Sensing cross-domain scene classification
por: Huang, Wei, et al.
Publicado: (2023)