Cargando…
Chiral Recognition of D/L-Ribose by Visual and SERS Assessments
Ribose is the central molecular unit in ribose nucleic acid (RNA). Ribose is a key molecule in the study of many persistent scientific mysteries, such as the origin of life and the chiral homogeneity of biological molecules. Therefore, the chiral recognition of ribose is of great significance. The t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537478/ https://www.ncbi.nlm.nih.gov/pubmed/37764256 http://dx.doi.org/10.3390/molecules28186480 |
Sumario: | Ribose is the central molecular unit in ribose nucleic acid (RNA). Ribose is a key molecule in the study of many persistent scientific mysteries, such as the origin of life and the chiral homogeneity of biological molecules. Therefore, the chiral recognition of ribose is of great significance. The traditional method of chiral recognition of ribose is HPLC, which is time-consuming, expensive, and can only be operated in the laboratory. There is no report on optical analytical techniques that can quickly detect the chirality of ribose. In this study, a simple and convenient approach for the chiral recognition of ribose has been developed. β-cyclodextrin(β-CD)-coated Ag NPs aggregate after adding D-ribose, so that D-/L-ribose can be identified using visual colorimetry and/or surface-enhanced Raman spectroscopy (SERS). The color change visible to the naked eye can readily distinguish the chirality of ribose, while the SERS method can provide the more sensitive analysis of enantiomeric ribose. The advantages of this method are that it is fast, convenient, low cost, and can be operated outside the laboratory. DFT calculations show that D-ribose and cyclodextrin have the same chirality, forming multiple strong hydrogen bonds between them; thus, D/L-ribose will induce different optical effects. |
---|