Cargando…
Quasi Real-Time Apple Defect Segmentation Using Deep Learning
Defect segmentation of apples is an important task in the agriculture industry for quality control and food safety. In this paper, we propose a deep learning approach for the automated segmentation of apple defects using convolutional neural networks (CNNs) based on a U-shaped architecture with skip...
Autores principales: | Agarla, Mirko, Napoletano, Paolo, Schettini, Raimondo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537567/ https://www.ncbi.nlm.nih.gov/pubmed/37765950 http://dx.doi.org/10.3390/s23187893 |
Ejemplares similares
-
An Efficient Method for No-Reference Video Quality Assessment
por: Agarla, Mirko, et al.
Publicado: (2021) -
No-Reference Quality Assessment of In-Capture Distorted Videos
por: Agarla, Mirko, et al.
Publicado: (2020) -
Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity
por: Napoletano, Paolo, et al.
Publicado: (2018) -
T1K+: A Database for Benchmarking Color Texture Classification and Retrieval Methods
por: Cusano, Claudio, et al.
Publicado: (2021) -
No Reference, Opinion Unaware Image Quality Assessment by Anomaly Detection
por: Leonardi, Marco, et al.
Publicado: (2021)