Cargando…
DaylilyNet: A Multi-Task Learning Method for Daylily Leaf Disease Detection
Timely detection and management of daylily diseases are crucial to prevent yield reduction. However, detection models often struggle with handling the interference of complex backgrounds, leading to low accuracy, especially in detecting small targets. To address this problem, we propose DaylilyNet,...
Autores principales: | Song, Zishen, Wang, Dong, Xiao, Lizhong, Zhu, Yongjian, Cao, Guogang, Wang, Yuli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537663/ https://www.ncbi.nlm.nih.gov/pubmed/37765935 http://dx.doi.org/10.3390/s23187879 |
Ejemplares similares
-
Assessing the Genetic Diversity of Daylily Germplasm Using SSR Markers: Implications for Daylily Breeding
por: Misiukevičius, Edvinas, et al.
Publicado: (2023) -
Study on the Detection Method for Daylily Based on YOLOv5 under Complex Field Environments
por: Yan, Hongwen, et al.
Publicado: (2023) -
The numerical classification and grading standards of daylily (Hemerocallis) flower color
por: Cui, Huliang, et al.
Publicado: (2019) -
Photolysis and cytotoxicity of the potentially toxic composition of daylily flower: colchicine
por: Zhang, Lin, et al.
Publicado: (2023) -
Study on Extraction and Antioxidant Activity of Flavonoids from Hemerocallis fulva (Daylily) Leaves
por: Wang, Wei, et al.
Publicado: (2022)