Cargando…
CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet
Cloud observation serves as the fundamental bedrock for acquiring comprehensive cloud-related information. The categorization of distinct ground-based clouds holds profound implications within the meteorological domain, boasting significant applications. Deep learning has substantially improved grou...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537665/ https://www.ncbi.nlm.nih.gov/pubmed/37766014 http://dx.doi.org/10.3390/s23187957 |
_version_ | 1785113153036615680 |
---|---|
author | Li, Sheng Wang, Min Sun, Shuo Wu, Jia Zhuang, Zhihao |
author_facet | Li, Sheng Wang, Min Sun, Shuo Wu, Jia Zhuang, Zhihao |
author_sort | Li, Sheng |
collection | PubMed |
description | Cloud observation serves as the fundamental bedrock for acquiring comprehensive cloud-related information. The categorization of distinct ground-based clouds holds profound implications within the meteorological domain, boasting significant applications. Deep learning has substantially improved ground-based cloud classification, with automated feature extraction being simpler and far more accurate than using traditional methods. A reengineering of the DenseNet architecture has given rise to an innovative cloud classification method denoted as CloudDenseNet. A novel CloudDense Block has been meticulously crafted to amplify channel attention and elevate the salient features pertinent to cloud classification endeavors. The lightweight CloudDenseNet structure is designed meticulously according to the distinctive characteristics of ground-based clouds and the intricacies of large-scale diverse datasets, which amplifies the generalization ability and elevates the recognition accuracy of the network. The optimal parameter is obtained by combining transfer learning with designed numerous experiments, which significantly enhances the network training efficiency and expedites the process. The methodology achieves an impressive 93.43% accuracy on the large-scale diverse dataset, surpassing numerous published methods. This attests to the substantial potential of the CloudDenseNet architecture for integration into ground-based cloud classification tasks. |
format | Online Article Text |
id | pubmed-10537665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105376652023-09-29 CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet Li, Sheng Wang, Min Sun, Shuo Wu, Jia Zhuang, Zhihao Sensors (Basel) Article Cloud observation serves as the fundamental bedrock for acquiring comprehensive cloud-related information. The categorization of distinct ground-based clouds holds profound implications within the meteorological domain, boasting significant applications. Deep learning has substantially improved ground-based cloud classification, with automated feature extraction being simpler and far more accurate than using traditional methods. A reengineering of the DenseNet architecture has given rise to an innovative cloud classification method denoted as CloudDenseNet. A novel CloudDense Block has been meticulously crafted to amplify channel attention and elevate the salient features pertinent to cloud classification endeavors. The lightweight CloudDenseNet structure is designed meticulously according to the distinctive characteristics of ground-based clouds and the intricacies of large-scale diverse datasets, which amplifies the generalization ability and elevates the recognition accuracy of the network. The optimal parameter is obtained by combining transfer learning with designed numerous experiments, which significantly enhances the network training efficiency and expedites the process. The methodology achieves an impressive 93.43% accuracy on the large-scale diverse dataset, surpassing numerous published methods. This attests to the substantial potential of the CloudDenseNet architecture for integration into ground-based cloud classification tasks. MDPI 2023-09-18 /pmc/articles/PMC10537665/ /pubmed/37766014 http://dx.doi.org/10.3390/s23187957 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Sheng Wang, Min Sun, Shuo Wu, Jia Zhuang, Zhihao CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet |
title | CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet |
title_full | CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet |
title_fullStr | CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet |
title_full_unstemmed | CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet |
title_short | CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet |
title_sort | clouddensenet: lightweight ground-based cloud classification method for large-scale datasets based on reconstructed densenet |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537665/ https://www.ncbi.nlm.nih.gov/pubmed/37766014 http://dx.doi.org/10.3390/s23187957 |
work_keys_str_mv | AT lisheng clouddensenetlightweightgroundbasedcloudclassificationmethodforlargescaledatasetsbasedonreconstructeddensenet AT wangmin clouddensenetlightweightgroundbasedcloudclassificationmethodforlargescaledatasetsbasedonreconstructeddensenet AT sunshuo clouddensenetlightweightgroundbasedcloudclassificationmethodforlargescaledatasetsbasedonreconstructeddensenet AT wujia clouddensenetlightweightgroundbasedcloudclassificationmethodforlargescaledatasetsbasedonreconstructeddensenet AT zhuangzhihao clouddensenetlightweightgroundbasedcloudclassificationmethodforlargescaledatasetsbasedonreconstructeddensenet |