Cargando…
Classification of Malicious URLs Using Machine Learning
Amid the rapid proliferation of thousands of new websites daily, distinguishing safe ones from potentially harmful ones has become an increasingly complex task. These websites often collect user data, and, without adequate cybersecurity measures such as the efficient detection and classification of...
Autores principales: | Abad, Shayan, Gholamy, Hassan, Aslani, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537824/ https://www.ncbi.nlm.nih.gov/pubmed/37765815 http://dx.doi.org/10.3390/s23187760 |
Ejemplares similares
-
Malicious URL Detection Based on Associative Classification
por: Kumi, Sandra, et al.
Publicado: (2021) -
BERT-Based Approaches to Identifying Malicious URLs
por: Su, Ming-Yang, et al.
Publicado: (2023) -
An intelligent identification and classification system for malicious uniform resource locators (URLs)
por: Abu Al-Haija, Qasem, et al.
Publicado: (2023) -
An Assessment of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep Learning Models
por: Aljabri, Malak, et al.
Publicado: (2022) -
Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning
por: Ghaleb, Fuad A., et al.
Publicado: (2022)