Cargando…
CS-MRI Reconstruction Using an Improved GAN with Dilated Residual Networks and Channel Attention Mechanism
Compressed sensing (CS) MRI has shown great potential in enhancing time efficiency. Deep learning techniques, specifically generative adversarial networks (GANs), have emerged as potent tools for speedy CS-MRI reconstruction. Yet, as the complexity of deep learning reconstruction models increases, t...
Autores principales: | Li, Xia, Zhang, Hui, Yang, Hao, Li, Tie-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537966/ https://www.ncbi.nlm.nih.gov/pubmed/37765747 http://dx.doi.org/10.3390/s23187685 |
Ejemplares similares
-
SARA-GAN: Self-Attention and Relative Average Discriminator Based Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction
por: Yuan, Zhenmou, et al.
Publicado: (2020) -
PIC-GAN: A Parallel Imaging Coupled Generative Adversarial Network for Accelerated Multi-Channel MRI Reconstruction
por: Lv, Jun, et al.
Publicado: (2021) -
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
por: Jiang, Mingfeng, et al.
Publicado: (2021) -
RCA-LF: Dense Light Field Reconstruction Using Residual Channel Attention Networks
por: Salem, Ahmed, et al.
Publicado: (2022) -
Residual Spatial and Channel Attention Networks for Single Image Dehazing
por: Jiang, Xin, et al.
Publicado: (2021)