Cargando…

Effect of Different Crosslinkers on Denatured Dentin Collagen’s Biostability, MMP Inhibition and Mechanical Properties

Objective: Sound, natural dentin collagen can be stabilized against enzymatic degradation through exogenous crosslinking treatment for durable bonding; however, the effect on denatured dentin (DD) collagen is unknown. Hence, the ability of different crosslinkers to enhance/restore the properties of...

Descripción completa

Detalles Bibliográficos
Autores principales: Nisar, Saleha, Hass, Viviane, Wang, Rong, Walker, Mary P., Wang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537969/
https://www.ncbi.nlm.nih.gov/pubmed/37765538
http://dx.doi.org/10.3390/polym15183683
_version_ 1785113219426156544
author Nisar, Saleha
Hass, Viviane
Wang, Rong
Walker, Mary P.
Wang, Yong
author_facet Nisar, Saleha
Hass, Viviane
Wang, Rong
Walker, Mary P.
Wang, Yong
author_sort Nisar, Saleha
collection PubMed
description Objective: Sound, natural dentin collagen can be stabilized against enzymatic degradation through exogenous crosslinking treatment for durable bonding; however, the effect on denatured dentin (DD) collagen is unknown. Hence, the ability of different crosslinkers to enhance/restore the properties of DD collagen was assessed. Methods: Demineralized natural and DD collagen films (7 mm × 7 mm × 7 µm) and beams (0.8 mm × 0.8 mm × 7 mm) were prepared. DD collagen was experimentally produced by heat or acid exposure, which was then assessed by various techniques. All specimens were then treated with 1 wt% of chemical crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/n-hydroxysuccinimide (EDC/NHS) and two structurally different flavonoids—theaflavins (TF) from black tea and type-A proanthocyanidins from cranberry juice (CR) for either 30 s or 1 h. The controls were untreated. Dentin films were assessed for chemical interaction and cross-linking effect by FTIR, biostability against exogenous collagenase by weight loss (WL) and hydroxyproline release (HYP), and endogenous matrix metalloproteinases (MMPs) activity by confocal laser microscopy. Dentin beams were evaluated for tensile properties. Data were analyzed using ANOVA and Tukey’s test (α = 0.05). Results: Compared with natural collagen, DD collagen showed pronounced structural changes, altered biostability and decreased mechanical properties, which were then improved to various degrees that were dependent on the crosslinkers used, with EDC/NHS being the least effective. Surprisingly, the well-known MMP inhibitor EDC/NHS showed negligible effect on or even increased MMP activity in DD collagen. As compared with control, cross-linking induced by TF and CR significantly increased collagen biostability (reduced WL and HYP release, p < 0.05), MMP inhibition (p < 0.001) and mechanical properties (p < 0.05), regardless of denaturation. Conclusions: DD collagen cannot or can only minimally be stabilized via EDC/NHS crosslinking; however, the challenging substrate of DD collagen can be enhanced or restored using the promising flavonoids TF and CR.
format Online
Article
Text
id pubmed-10537969
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105379692023-09-29 Effect of Different Crosslinkers on Denatured Dentin Collagen’s Biostability, MMP Inhibition and Mechanical Properties Nisar, Saleha Hass, Viviane Wang, Rong Walker, Mary P. Wang, Yong Polymers (Basel) Article Objective: Sound, natural dentin collagen can be stabilized against enzymatic degradation through exogenous crosslinking treatment for durable bonding; however, the effect on denatured dentin (DD) collagen is unknown. Hence, the ability of different crosslinkers to enhance/restore the properties of DD collagen was assessed. Methods: Demineralized natural and DD collagen films (7 mm × 7 mm × 7 µm) and beams (0.8 mm × 0.8 mm × 7 mm) were prepared. DD collagen was experimentally produced by heat or acid exposure, which was then assessed by various techniques. All specimens were then treated with 1 wt% of chemical crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/n-hydroxysuccinimide (EDC/NHS) and two structurally different flavonoids—theaflavins (TF) from black tea and type-A proanthocyanidins from cranberry juice (CR) for either 30 s or 1 h. The controls were untreated. Dentin films were assessed for chemical interaction and cross-linking effect by FTIR, biostability against exogenous collagenase by weight loss (WL) and hydroxyproline release (HYP), and endogenous matrix metalloproteinases (MMPs) activity by confocal laser microscopy. Dentin beams were evaluated for tensile properties. Data were analyzed using ANOVA and Tukey’s test (α = 0.05). Results: Compared with natural collagen, DD collagen showed pronounced structural changes, altered biostability and decreased mechanical properties, which were then improved to various degrees that were dependent on the crosslinkers used, with EDC/NHS being the least effective. Surprisingly, the well-known MMP inhibitor EDC/NHS showed negligible effect on or even increased MMP activity in DD collagen. As compared with control, cross-linking induced by TF and CR significantly increased collagen biostability (reduced WL and HYP release, p < 0.05), MMP inhibition (p < 0.001) and mechanical properties (p < 0.05), regardless of denaturation. Conclusions: DD collagen cannot or can only minimally be stabilized via EDC/NHS crosslinking; however, the challenging substrate of DD collagen can be enhanced or restored using the promising flavonoids TF and CR. MDPI 2023-09-07 /pmc/articles/PMC10537969/ /pubmed/37765538 http://dx.doi.org/10.3390/polym15183683 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nisar, Saleha
Hass, Viviane
Wang, Rong
Walker, Mary P.
Wang, Yong
Effect of Different Crosslinkers on Denatured Dentin Collagen’s Biostability, MMP Inhibition and Mechanical Properties
title Effect of Different Crosslinkers on Denatured Dentin Collagen’s Biostability, MMP Inhibition and Mechanical Properties
title_full Effect of Different Crosslinkers on Denatured Dentin Collagen’s Biostability, MMP Inhibition and Mechanical Properties
title_fullStr Effect of Different Crosslinkers on Denatured Dentin Collagen’s Biostability, MMP Inhibition and Mechanical Properties
title_full_unstemmed Effect of Different Crosslinkers on Denatured Dentin Collagen’s Biostability, MMP Inhibition and Mechanical Properties
title_short Effect of Different Crosslinkers on Denatured Dentin Collagen’s Biostability, MMP Inhibition and Mechanical Properties
title_sort effect of different crosslinkers on denatured dentin collagen’s biostability, mmp inhibition and mechanical properties
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537969/
https://www.ncbi.nlm.nih.gov/pubmed/37765538
http://dx.doi.org/10.3390/polym15183683
work_keys_str_mv AT nisarsaleha effectofdifferentcrosslinkersondenatureddentincollagensbiostabilitymmpinhibitionandmechanicalproperties
AT hassviviane effectofdifferentcrosslinkersondenatureddentincollagensbiostabilitymmpinhibitionandmechanicalproperties
AT wangrong effectofdifferentcrosslinkersondenatureddentincollagensbiostabilitymmpinhibitionandmechanicalproperties
AT walkermaryp effectofdifferentcrosslinkersondenatureddentincollagensbiostabilitymmpinhibitionandmechanicalproperties
AT wangyong effectofdifferentcrosslinkersondenatureddentincollagensbiostabilitymmpinhibitionandmechanicalproperties