Cargando…
SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems
In cybersecurity, a network intrusion detection system (NIDS) is a critical component in networks. It monitors network traffic and flags suspicious activities. To effectively detect malicious traffic, several detection techniques, including machine learning-based NIDSs (ML-NIDSs), have been proposed...
Autores principales: | Aldhaheri, Sahar, Alhuzali, Abeer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538047/ https://www.ncbi.nlm.nih.gov/pubmed/37765852 http://dx.doi.org/10.3390/s23187796 |
Ejemplares similares
-
E2SGAN: EEG-to-SEEG translation with generative adversarial networks
por: Hu, Mengqi, et al.
Publicado: (2022) -
An Imbalanced Generative Adversarial Network-Based Approach for Network Intrusion Detection in an Imbalanced Dataset
por: Rao, Yamarthi Narasimha, et al.
Publicado: (2023) -
Adversarial attacks against supervised machine learning based network intrusion detection systems
por: Alshahrani, Ebtihaj, et al.
Publicado: (2022) -
Conditional Tabular Generative Adversarial Based Intrusion Detection System for Detecting Ddos and Dos Attacks on the Internet of Things Networks
por: Alabsi, Basim Ahmad, et al.
Publicado: (2023) -
A generative adversarial model of intrusive imagery in the human brain
por: Cushing, Cody A, et al.
Publicado: (2023)