Cargando…
Enhanced Interfacial Properties of Carbon Fiber/Maleic Anhydride-Grafted Polypropylene Composites via Two-Step Surface Treatment: Electrochemical Oxidation and Silane Treatment
The interfacial adhesion between carbon fibers (CFs) and a thermoplastic matrix is an important aspect that should be improved in manufacturing CF-reinforced thermoplastics with high strength and rigidity. In this study, the effects of a two-step surface treatment comprising electrochemical oxidatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538113/ https://www.ncbi.nlm.nih.gov/pubmed/37765638 http://dx.doi.org/10.3390/polym15183784 |
Sumario: | The interfacial adhesion between carbon fibers (CFs) and a thermoplastic matrix is an important aspect that should be improved in manufacturing CF-reinforced thermoplastics with high strength and rigidity. In this study, the effects of a two-step surface treatment comprising electrochemical oxidation and silane treatment of the CF surface on the mechanical properties of CF/maleic anhydride-grafted polypropylene (MAPP) composites were confirmed. The surface characteristics of the treated CFs were analyzed via scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The tensile testing of a single CF and interfacial adhesion of the samples before and after the surface treatment were analyzed using a single-fiber testing machine and a universal testing machine. After the silane treatment, the roughness of the CF surface increased due to the formation of a siloxane network. In addition, the interfacial shear strength increased by ∼450% compared to that of the untreated CFs due to the covalent bond between the -NH(2) end group of siloxane and MAPP. This two-step surface treatment, which can be performed continuously, is considered an effective method for improving the mechanical interface strength between the CF and polymer matrix. |
---|