Cargando…

Cohesive Zone Modeling of Pull-Out Test for Dental Fiber–Silicone Polymer

Background: Several analytical methods for the fiber pull-out test have been developed to evaluate the bond strength of fiber–matrix systems. We aimed to investigate the debonding mechanism of a fiber–silicone pull-out specimen and validate the experimental data using 3D-FEM and a cohesive element a...

Descripción completa

Detalles Bibliográficos
Autores principales: Maqableh, Ayman M., Hatamleh, Muhanad M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538124/
https://www.ncbi.nlm.nih.gov/pubmed/37765521
http://dx.doi.org/10.3390/polym15183668
Descripción
Sumario:Background: Several analytical methods for the fiber pull-out test have been developed to evaluate the bond strength of fiber–matrix systems. We aimed to investigate the debonding mechanism of a fiber–silicone pull-out specimen and validate the experimental data using 3D-FEM and a cohesive element approach. Methods: A 3D model of a fiber–silicone pull-out testing specimen was established by pre-processing CT images of the typical specimen. The materials on the scans were posted in three different cross-sectional views using ScanIP and imported to ScanFE in which 3D generation was implemented for all of the image slices. This file was exported in FEA format and was imported in the FEA software (PATRAN/ABAQUS, version r2) for generating solid mesh, boundary conditions, and material properties attribution, as well as load case creation and data processing. Results: The FEM cohesive zone pull-out force versus displacement curve showed an initial linear response. The Von Mises stress concentration was distributed along the fiber–silicone interface. The damage in the principal stresses’ directions S11, S22, and S33, which represented the maximum possible magnitude of tensile and compressive stress at the fiber–silicone interface, showed that the stress is higher in the direction S33 (stress acting in the Z-direction) in which the lower damage criterion was higher as well when compared to S11 (stress acting in the XY plane) and S23 (stress acting in the YZ plane). Conclusions: The comparison between the experimental values and the results from the finite element simulations show that the proposed cohesive zone model accurately reproduces the experimental results. These results are considered almost identical to the experimental observations about the interface. The cohesive element approach is a potential function that takes into account the shear effects with many advantages related to its ability to predict the initiation and progress of the fiber–silicone debonding during pull-out tests. A disadvantage of this approach is the computational effort required for the simulation and analysis process. A good understanding of the parameters related to the cohesive laws is responsible for a successful simulation.