Cargando…
Research on Deep Reinforcement Learning Control Algorithm for Active Suspension Considering Uncertain Time Delay
The uncertain delay characteristic of actuators is a critical factor that affects the control effectiveness of the active suspension system. Therefore, it is crucial to develop a control algorithm that takes into account this uncertain delay in order to ensure stable control performance. This study...
Autores principales: | Wang, Yang, Wang, Cheng, Zhao, Shijie, Guo, Konghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538169/ https://www.ncbi.nlm.nih.gov/pubmed/37765884 http://dx.doi.org/10.3390/s23187827 |
Ejemplares similares
-
Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling
por: Yuan, Yunmei, et al.
Publicado: (2021) -
Retracted: Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Deep Reinforcement Learning Based Trajectory Planning Under Uncertain Constraints
por: Chen, Lienhung, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Charging Scheduling of Electric Vehicles Considering Distribution Network Voltage Stability
por: Liu, Ding, et al.
Publicado: (2023) -
Fast Distributed Model Predictive Control Method for Active Suspension Systems
por: Zhang, Niaona, et al.
Publicado: (2023)