Cargando…

Vps60 initiates alternative ESCRT-III filaments

Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a no...

Descripción completa

Detalles Bibliográficos
Autores principales: Pfitzner, Anna-Katharina, Zivkovic, Henry, Bernat-Silvestre, César, West, Matt, Peltier, Tanner, Humbert, Frédéric, Odorizzi, Greg, Roux, Aurélien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538557/
https://www.ncbi.nlm.nih.gov/pubmed/37768378
http://dx.doi.org/10.1083/jcb.202206028
Descripción
Sumario:Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.