Cargando…

Spatio-temporal evolution of acoustic emission events and initiation of stress fields in the fracturing of rock mass around a roadway under cyclic high-stress loading

To study fracture mechanisms and initiation of stress fields in the rock mass around a roadway subjected to cyclic stress, a series of loading and unloading tests were conducted on the rock mass around the roadway by using high-precision acoustic emission (AE) monitoring. The results show that inten...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Gang, Wu, Dawei, Zhu, Shengyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538668/
https://www.ncbi.nlm.nih.gov/pubmed/37768907
http://dx.doi.org/10.1371/journal.pone.0286005
Descripción
Sumario:To study fracture mechanisms and initiation of stress fields in the rock mass around a roadway subjected to cyclic stress, a series of loading and unloading tests were conducted on the rock mass around the roadway by using high-precision acoustic emission (AE) monitoring. The results show that intense AE activities occur in a specimen during cyclic load-holding at different levels. With the increase in the number of cycles, the overall stability of the specimen gradually decreases. In the cyclic loading and unloading process, the specimen exhibits a Kaiser effect. As the number of cycles increases, more AE events occur in the unloading stage and a Felicity effect is manifest. The spatial distribution of AE events is related to the stress regime and structure of the specimen, crack propagation in the roadway exhibits directionality due to effects of the principal stress. High stress is conducive to microcrack initiation and propagation in the specimen, which accelerates damage accumulation and macrofracture formation in a rock mass. The research provides a reference for roadway support work and disaster prevention and control in deep mines.