Cargando…
A deep learning algorithm with good prediction efficacy for cancer-specific survival in osteosarcoma: A retrospective study
OBJECTIVE: Successful prognosis is crucial for the management and treatment of osteosarcoma (OSC). This study aimed to predict the cancer-specific survival rate in patients with OSC using deep learning algorithms and classical Cox proportional hazard models to provide data to support individualized...
Autores principales: | Liu, Yang, Xie, Lang, Wang, Dingxue, Xia, Kaide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538762/ https://www.ncbi.nlm.nih.gov/pubmed/37768965 http://dx.doi.org/10.1371/journal.pone.0286841 |
Ejemplares similares
-
Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models
por: Xia, Kaide, et al.
Publicado: (2023) -
Nomogram for predicting disease-specific survival in osteosarcoma
por: Yang, Xia, et al.
Publicado: (2022) -
Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma
por: Bai, Bing‐li, et al.
Publicado: (2022) -
Nomogram application to predict overall and cancer-specific survival in osteosarcoma
por: Zheng, Weipeng, et al.
Publicado: (2018) -
Nomograms predicting overall survival and cancer-specific survival in osteosarcoma patients (STROBE)
por: Chen, Wenhao, et al.
Publicado: (2019)