Cargando…

Analyzing influence of COVID-19 on crypto & financial markets and sentiment analysis using deep ensemble model

COVID-19 affected the world’s economy severely and increased the inflation rate in both developed and developing countries. COVID-19 also affected the financial markets and crypto markets significantly, however, some crypto markets flourished and touched their peak during the pandemic era. This stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Washington, Patrick Bernard, Gali, Pradeep, Rustam, Furqan, Ashraf, Imran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538772/
https://www.ncbi.nlm.nih.gov/pubmed/37768959
http://dx.doi.org/10.1371/journal.pone.0286541
Descripción
Sumario:COVID-19 affected the world’s economy severely and increased the inflation rate in both developed and developing countries. COVID-19 also affected the financial markets and crypto markets significantly, however, some crypto markets flourished and touched their peak during the pandemic era. This study performs an analysis of the impact of COVID-19 on public opinion and sentiments regarding the financial markets and crypto markets. It conducts sentiment analysis on tweets related to financial markets and crypto markets posted during COVID-19 peak days. Using sentiment analysis, it investigates the people’s sentiments regarding investment in these markets during COVID-19. In addition, damage analysis in terms of market value is also carried out along with the worse time for financial and crypto markets. For analysis, the data is extracted from Twitter using the SNSscraper library. This study proposes a hybrid model called CNN-LSTM (convolutional neural network-long short-term memory model) for sentiment classification. CNN-LSTM outperforms with 0.89, and 0.92 F1 Scores for crypto and financial markets, respectively. Moreover, topic extraction from the tweets is also performed along with the sentiments related to each topic.