Cargando…
Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest
Out-of-hospital cardiac arrest (OHCA) is linked to a poor prognosis and remains a public health concern. Several studies have predicted good neurological outcomes of OHCA. In this study, we used the Bayesian network to identify variables closely associated with good neurological survival outcomes in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538776/ https://www.ncbi.nlm.nih.gov/pubmed/37768915 http://dx.doi.org/10.1371/journal.pone.0291258 |
_version_ | 1785113373394862080 |
---|---|
author | Shinada, Kota Matsuoka, Ayaka Koami, Hiroyuki Sakamoto, Yuichiro |
author_facet | Shinada, Kota Matsuoka, Ayaka Koami, Hiroyuki Sakamoto, Yuichiro |
author_sort | Shinada, Kota |
collection | PubMed |
description | Out-of-hospital cardiac arrest (OHCA) is linked to a poor prognosis and remains a public health concern. Several studies have predicted good neurological outcomes of OHCA. In this study, we used the Bayesian network to identify variables closely associated with good neurological survival outcomes in patients with OHCA. This was a retrospective observational study using the Japan Association for Acute Medicine OHCA registry. Fifteen explanatory variables were used, and the outcome was one-month survival with Glasgow–Pittsburgh cerebral performance category (CPC) 1–2. The 2014–2018 dataset was used as training data. The variables selected were identified and a sensitivity analysis was performed. The 2019 dataset was used for the validation analysis. Four variables were identified, including the motor response component of the Glasgow Coma Scale (GCS M), initial rhythm, age, and absence of epinephrine. Estimated probabilities were increased in the following order: GCS M score: 2–6; epinephrine: non-administered; initial rhythm: spontaneous rhythm and shockable; and age: <58 and 59–70 years. The validation showed a sensitivity of 75.4% and a specificity of 95.4%. We identified GCS M score of 2–6, initial rhythm (spontaneous rhythm and shockable), younger age, and absence of epinephrine as variables associated with one-month survival with CPC 1–2. These variables may help clinicians in the decision-making process while treating patients with OHCA. |
format | Online Article Text |
id | pubmed-10538776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105387762023-09-29 Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest Shinada, Kota Matsuoka, Ayaka Koami, Hiroyuki Sakamoto, Yuichiro PLoS One Research Article Out-of-hospital cardiac arrest (OHCA) is linked to a poor prognosis and remains a public health concern. Several studies have predicted good neurological outcomes of OHCA. In this study, we used the Bayesian network to identify variables closely associated with good neurological survival outcomes in patients with OHCA. This was a retrospective observational study using the Japan Association for Acute Medicine OHCA registry. Fifteen explanatory variables were used, and the outcome was one-month survival with Glasgow–Pittsburgh cerebral performance category (CPC) 1–2. The 2014–2018 dataset was used as training data. The variables selected were identified and a sensitivity analysis was performed. The 2019 dataset was used for the validation analysis. Four variables were identified, including the motor response component of the Glasgow Coma Scale (GCS M), initial rhythm, age, and absence of epinephrine. Estimated probabilities were increased in the following order: GCS M score: 2–6; epinephrine: non-administered; initial rhythm: spontaneous rhythm and shockable; and age: <58 and 59–70 years. The validation showed a sensitivity of 75.4% and a specificity of 95.4%. We identified GCS M score of 2–6, initial rhythm (spontaneous rhythm and shockable), younger age, and absence of epinephrine as variables associated with one-month survival with CPC 1–2. These variables may help clinicians in the decision-making process while treating patients with OHCA. Public Library of Science 2023-09-28 /pmc/articles/PMC10538776/ /pubmed/37768915 http://dx.doi.org/10.1371/journal.pone.0291258 Text en © 2023 Shinada et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Shinada, Kota Matsuoka, Ayaka Koami, Hiroyuki Sakamoto, Yuichiro Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest |
title | Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest |
title_full | Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest |
title_fullStr | Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest |
title_full_unstemmed | Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest |
title_short | Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest |
title_sort | bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538776/ https://www.ncbi.nlm.nih.gov/pubmed/37768915 http://dx.doi.org/10.1371/journal.pone.0291258 |
work_keys_str_mv | AT shinadakota bayesiannetworkpredictedvariablesforgoodneurologicaloutcomesinpatientswithoutofhospitalcardiacarrest AT matsuokaayaka bayesiannetworkpredictedvariablesforgoodneurologicaloutcomesinpatientswithoutofhospitalcardiacarrest AT koamihiroyuki bayesiannetworkpredictedvariablesforgoodneurologicaloutcomesinpatientswithoutofhospitalcardiacarrest AT sakamotoyuichiro bayesiannetworkpredictedvariablesforgoodneurologicaloutcomesinpatientswithoutofhospitalcardiacarrest |