Cargando…
Evaluating Scalable Supervised Learning for Synthesize-on-Demand Chemical Libraries
[Image: see text] Traditional small-molecule drug discovery is a time-consuming and costly endeavor. High-throughput chemical screening can only assess a tiny fraction of drug-like chemical space. The strong predictive power of modern machine-learning methods for virtual chemical screening enables t...
Autores principales: | Alnammi, Moayad, Liu, Shengchao, Ericksen, Spencer S., Ananiev, Gene E., Voter, Andrew F., Guo, Song, Keck, James L., Hoffmann, F. Michael, Wildman, Scott A., Gitter, Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538940/ https://www.ncbi.nlm.nih.gov/pubmed/37625010 http://dx.doi.org/10.1021/acs.jcim.3c00912 |
Ejemplares similares
-
Practical Model Selection for Prospective Virtual
Screening
por: Liu, Shengchao, et al.
Publicado: (2018) -
Predicting kinase inhibitors using bioactivity matrix derived informer sets
por: Zhang, Huikun, et al.
Publicado: (2019) -
Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries
por: Schmidt, Thorsten L., et al.
Publicado: (2015) -
On-demand photonic entanglement synthesizer
por: Takeda, Shuntaro, et al.
Publicado: (2019) -
Learning Drug Functions from Chemical Structures with
Convolutional Neural Networks and Random Forests
por: Meyer, Jesse G., et al.
Publicado: (2019)