Cargando…
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations
Single-cell RNA sequencing (scRNA-seq) is a widely used technique for characterizing individual cells and studying gene expression at the single-cell level. Clustering plays a vital role in grouping similar cells together for various downstream analyses. However, the high sparsity and dimensionality...
Autores principales: | Lei, Tianyuan, Chen, Ruoyu, Zhang, Shaoqiang, Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539043/ https://www.ncbi.nlm.nih.gov/pubmed/37769630 http://dx.doi.org/10.1093/bib/bbad335 |
Ejemplares similares
-
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021) -
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
por: Han, Wenkai, et al.
Publicado: (2022) -
scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
por: Jia, Shangru, et al.
Publicado: (2023) -
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids
por: Wang, Yu Mei, et al.
Publicado: (2023)