Cargando…
Machine learning-based quantification for disease uncertainty increases the statistical power of genetic association studies
MOTIVATION: Allowance for increasingly large samples is a key to identify the association of genetic variants with Alzheimer’s disease (AD) in genome-wide association studies (GWAS). Accordingly, we aimed to develop a method that incorporates patients with mild cognitive impairment and unknown cogni...
Autores principales: | Park, Jun Young, Lee, Jang Jae, Lee, Younghwa, Lee, Dongsoo, Gim, Jungsoo, Farrer, Lindsay, Lee, Kun Ho, Won, Sungho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539075/ https://www.ncbi.nlm.nih.gov/pubmed/37665736 http://dx.doi.org/10.1093/bioinformatics/btad534 |
Ejemplares similares
-
Biphasic regulation of tumorigenesis by PTK7 expression level in esophageal squamous cell carcinoma
por: Shin, Won-Sik, et al.
Publicado: (2018) -
LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates
por: Gim, Jungsoo, et al.
Publicado: (2016) -
BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data
por: Park, Kyungtaek, et al.
Publicado: (2019) -
Network analysis for count data with excess zeros
por: Choi, Hosik, et al.
Publicado: (2017) -
A Between Ethnicities Comparison of Chronic Obstructive Pulmonary Disease Genetic Risk
por: Gim, Jungsoo, et al.
Publicado: (2020)