Cargando…

Efficient parameter generation for constrained models using MCMC

Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC)...

Descripción completa

Detalles Bibliográficos
Autores principales: Kravtsova, Natalia, Chamberlin, Helen M., Dawes, Adriana T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539337/
https://www.ncbi.nlm.nih.gov/pubmed/37770498
http://dx.doi.org/10.1038/s41598-023-43433-y
Descripción
Sumario:Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC) approach for the problem of constrained model parameter generation by designing a Markov chain that efficiently explores a model’s parameter space. We demonstrate the use of our proposed methodology to analyze responses of a newly constructed bistability-constrained model of protein phosphorylation to perturbations in the underlying protein network. Our results suggest that parameter generation for constrained models using MCMC provides powerful tools for modeling-aided analysis of complex natural processes.