Cargando…

Efficient parameter generation for constrained models using MCMC

Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC)...

Descripción completa

Detalles Bibliográficos
Autores principales: Kravtsova, Natalia, Chamberlin, Helen M., Dawes, Adriana T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539337/
https://www.ncbi.nlm.nih.gov/pubmed/37770498
http://dx.doi.org/10.1038/s41598-023-43433-y
_version_ 1785113476970053632
author Kravtsova, Natalia
Chamberlin, Helen M.
Dawes, Adriana T.
author_facet Kravtsova, Natalia
Chamberlin, Helen M.
Dawes, Adriana T.
author_sort Kravtsova, Natalia
collection PubMed
description Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC) approach for the problem of constrained model parameter generation by designing a Markov chain that efficiently explores a model’s parameter space. We demonstrate the use of our proposed methodology to analyze responses of a newly constructed bistability-constrained model of protein phosphorylation to perturbations in the underlying protein network. Our results suggest that parameter generation for constrained models using MCMC provides powerful tools for modeling-aided analysis of complex natural processes.
format Online
Article
Text
id pubmed-10539337
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105393372023-09-30 Efficient parameter generation for constrained models using MCMC Kravtsova, Natalia Chamberlin, Helen M. Dawes, Adriana T. Sci Rep Article Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC) approach for the problem of constrained model parameter generation by designing a Markov chain that efficiently explores a model’s parameter space. We demonstrate the use of our proposed methodology to analyze responses of a newly constructed bistability-constrained model of protein phosphorylation to perturbations in the underlying protein network. Our results suggest that parameter generation for constrained models using MCMC provides powerful tools for modeling-aided analysis of complex natural processes. Nature Publishing Group UK 2023-09-28 /pmc/articles/PMC10539337/ /pubmed/37770498 http://dx.doi.org/10.1038/s41598-023-43433-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kravtsova, Natalia
Chamberlin, Helen M.
Dawes, Adriana T.
Efficient parameter generation for constrained models using MCMC
title Efficient parameter generation for constrained models using MCMC
title_full Efficient parameter generation for constrained models using MCMC
title_fullStr Efficient parameter generation for constrained models using MCMC
title_full_unstemmed Efficient parameter generation for constrained models using MCMC
title_short Efficient parameter generation for constrained models using MCMC
title_sort efficient parameter generation for constrained models using mcmc
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539337/
https://www.ncbi.nlm.nih.gov/pubmed/37770498
http://dx.doi.org/10.1038/s41598-023-43433-y
work_keys_str_mv AT kravtsovanatalia efficientparametergenerationforconstrainedmodelsusingmcmc
AT chamberlinhelenm efficientparametergenerationforconstrainedmodelsusingmcmc
AT dawesadrianat efficientparametergenerationforconstrainedmodelsusingmcmc