Cargando…
Efficient parameter generation for constrained models using MCMC
Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC)...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539337/ https://www.ncbi.nlm.nih.gov/pubmed/37770498 http://dx.doi.org/10.1038/s41598-023-43433-y |
_version_ | 1785113476970053632 |
---|---|
author | Kravtsova, Natalia Chamberlin, Helen M. Dawes, Adriana T. |
author_facet | Kravtsova, Natalia Chamberlin, Helen M. Dawes, Adriana T. |
author_sort | Kravtsova, Natalia |
collection | PubMed |
description | Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC) approach for the problem of constrained model parameter generation by designing a Markov chain that efficiently explores a model’s parameter space. We demonstrate the use of our proposed methodology to analyze responses of a newly constructed bistability-constrained model of protein phosphorylation to perturbations in the underlying protein network. Our results suggest that parameter generation for constrained models using MCMC provides powerful tools for modeling-aided analysis of complex natural processes. |
format | Online Article Text |
id | pubmed-10539337 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105393372023-09-30 Efficient parameter generation for constrained models using MCMC Kravtsova, Natalia Chamberlin, Helen M. Dawes, Adriana T. Sci Rep Article Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC) approach for the problem of constrained model parameter generation by designing a Markov chain that efficiently explores a model’s parameter space. We demonstrate the use of our proposed methodology to analyze responses of a newly constructed bistability-constrained model of protein phosphorylation to perturbations in the underlying protein network. Our results suggest that parameter generation for constrained models using MCMC provides powerful tools for modeling-aided analysis of complex natural processes. Nature Publishing Group UK 2023-09-28 /pmc/articles/PMC10539337/ /pubmed/37770498 http://dx.doi.org/10.1038/s41598-023-43433-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kravtsova, Natalia Chamberlin, Helen M. Dawes, Adriana T. Efficient parameter generation for constrained models using MCMC |
title | Efficient parameter generation for constrained models using MCMC |
title_full | Efficient parameter generation for constrained models using MCMC |
title_fullStr | Efficient parameter generation for constrained models using MCMC |
title_full_unstemmed | Efficient parameter generation for constrained models using MCMC |
title_short | Efficient parameter generation for constrained models using MCMC |
title_sort | efficient parameter generation for constrained models using mcmc |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539337/ https://www.ncbi.nlm.nih.gov/pubmed/37770498 http://dx.doi.org/10.1038/s41598-023-43433-y |
work_keys_str_mv | AT kravtsovanatalia efficientparametergenerationforconstrainedmodelsusingmcmc AT chamberlinhelenm efficientparametergenerationforconstrainedmodelsusingmcmc AT dawesadrianat efficientparametergenerationforconstrainedmodelsusingmcmc |