Cargando…
Efficient parameter generation for constrained models using MCMC
Mathematical models of complex systems rely on parameter values to produce a desired behavior. As mathematical and computational models increase in complexity, it becomes correspondingly difficult to find parameter values that satisfy system constraints. We propose a Markov Chain Monte Carlo (MCMC)...
Autores principales: | Kravtsova, Natalia, Chamberlin, Helen M., Dawes, Adriana T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539337/ https://www.ncbi.nlm.nih.gov/pubmed/37770498 http://dx.doi.org/10.1038/s41598-023-43433-y |
Ejemplares similares
-
Generating MCMC proposals by randomly rotating the regular simplex
por: Holbrook, Andrew J.
Publicado: (2023) -
Accelerating MCMC algorithms
por: Robert, Christian P., et al.
Publicado: (2018) -
The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC
por: Livingstone, Samuel, et al.
Publicado: (2022) -
Fast Compression of MCMC Output
por: Chopin, Nicolas, et al.
Publicado: (2021) -
On the Use of Bootstrapped Topologies in Coalescent-Based Bayesian MCMC Inference: A Comparison of Estimation and Computational Efficiencies
por: Rodrigo, Allen G., et al.
Publicado: (2009)