Cargando…
Extracellular high molecular weight α-synuclein oligomers induce cell death by disrupting the plasma membrane
α-Synuclein (αS), the causative protein of Parkinson’s disease and other α-synucleinopathies, aggregates from a low molecular weight form (LMW-αS) to a high molecular weight αS oligomer (HMW-αSo). Aggregated αS accumulates intracellularly, induces intrinsic apoptosis, is released extracellularly, an...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539356/ https://www.ncbi.nlm.nih.gov/pubmed/37770475 http://dx.doi.org/10.1038/s41531-023-00583-0 |
Sumario: | α-Synuclein (αS), the causative protein of Parkinson’s disease and other α-synucleinopathies, aggregates from a low molecular weight form (LMW-αS) to a high molecular weight αS oligomer (HMW-αSo). Aggregated αS accumulates intracellularly, induces intrinsic apoptosis, is released extracellularly, and appears to propagate disease through prion-like spreading. Whether extracellular αS aggregates are cytotoxic, damage cell wall, or induce cell death is unclear. We investigated cytotoxicity and cell death caused by HMW-αSo or LMW-αS. Extracellular HMW-αSo was more cytotoxic than LMW-αS and was a crucial factor for inducing plasma membrane damage and cell death. HMW-αSo induced reactive oxygen species production and phospholipid peroxidation in the membrane, thereby impairing calcium homeostasis and disrupting plasma membrane integrity. HMW-αSo also induced extrinsic apoptosis and cell death by activating acidic sphingomyelinase. Thus, as extracellular HMW-αSo causes neuronal injury and death via cellular transmission and direct plasma membrane damage, we propose an additional disease progression pathway for α-synucleinopathies. |
---|