Cargando…

The characteristics and influencing factors of spatial network of city-based innovation correlation in China: from the perspective of high tech zones

In the context of “space of flows”, city-based innovation correlation in driving economic growth is no longer limited to the traditional hierarchical structure. It is of great significance to explore Chinese cities innovation association network from the perspective of high-tech zones which gather a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Hong, Jiang, Lili, Zhou, Jia, Chu, Nanchen, Li, Fengjiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539513/
https://www.ncbi.nlm.nih.gov/pubmed/37770521
http://dx.doi.org/10.1038/s41598-023-43402-5
Descripción
Sumario:In the context of “space of flows”, city-based innovation correlation in driving economic growth is no longer limited to the traditional hierarchical structure. It is of great significance to explore Chinese cities innovation association network from the perspective of high-tech zones which gather a large number of innovation resources. Here our report is to provide new ideas for improving the innovation capability of high-tech zones and accelerating the construction of Chinese high-quality innovation system. Here we take 142 cities with high-tech zones as research samples, and explore the characteristics and influencing factors of spatial network of city-based innovation correlation in China, through modified gravity modelsocial, network analysis and QAP analysis. The results show that city-based innovation network is not closely connected, the number of redundant connection channels is low efficiency, showing a four-level spatial pattern of “Z” shaped spindle. Among them, degree centrality of cities in eastern China is higher than that in the western region, the core cities in central China play a bridging role, and western remote cities are easily affected by related cities. Moreover, there are four innovation cohesion subgroups, including the northern hinterland subgroup, the eastern coastal subgroup, the southern subgroup and the western cooperation subgroup. Furthermore, the results of the influencing factors analysis show the differences in administrative level, economic development level, openness to the outside world, and investment in technology are conducive to the innovation association between cities, while the similarities in spatial adjacency and industrial structure will promote the strong innovation association between cities.