Cargando…
A general framework for powerful confounder adjustment in omics association studies
MOTIVATION: Genomic data are subject to various sources of confounding, such as demographic variables, biological heterogeneity, and batch effects. To identify genomic features associated with a variable of interest in the presence of confounders, the traditional approach involves fitting a confound...
Autores principales: | Roy, Asmita, Chen, Jun, Zhang, Xianyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539716/ https://www.ncbi.nlm.nih.gov/pubmed/37688561 http://dx.doi.org/10.1093/bioinformatics/btad563 |
Ejemplares similares
-
2dFDR: a new approach to confounder adjustment substantially increases detection power in omics association studies
por: Yi, Sangyoon, et al.
Publicado: (2021) -
Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables
por: Zawadzki, Roy S., et al.
Publicado: (2023) -
AIME: Autoencoder-based integrative multi-omics data embedding that allows for confounder adjustments
por: Yu, Tianwei
Publicado: (2022) -
To Adjust or Not to Adjust? When a “Confounder” Is Only Measured After Exposure
por: Groenwold, Rolf H. H., et al.
Publicado: (2021) -
Confounding and regression adjustment in difference‐in‐differences studies
por: Zeldow, Bret, et al.
Publicado: (2021)