Cargando…

An electrochemical cell for in operando (13)C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution

In operando nuclear magnetic resonance (NMR) spectroscopy is one method for the online investigation of electrochemical systems and reactions. It allows for real-time observations of the formation of products and intermediates, and it grants insights into the interactions of substrates and catalysts...

Descripción completa

Detalles Bibliográficos
Autores principales: Jovanovic, Sven, Schleker, P. Philipp M., Streun, Matthias, Merz, Steffen, Jakes, Peter, Schatz, Michael, Eichel, Rüdiger-A., Granwehr, Josef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Copernicus GmbH 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539767/
https://www.ncbi.nlm.nih.gov/pubmed/37904775
http://dx.doi.org/10.5194/mr-2-265-2021
Descripción
Sumario:In operando nuclear magnetic resonance (NMR) spectroscopy is one method for the online investigation of electrochemical systems and reactions. It allows for real-time observations of the formation of products and intermediates, and it grants insights into the interactions of substrates and catalysts. An in operando NMR setup for the investigation of the electrolytic reduction of [Formula: see text] at silver electrodes has been developed. The electrolysis cell consists of a three-electrode setup using a working electrode of pristine silver, a chlorinated silver wire as the reference electrode, and a graphite counter electrode. The setup can be adjusted for the use of different electrode materials and fits inside a 5 mm NMR tube. Additionally, a shielding setup was employed to minimize noise caused by interference of external radio frequency (RF) waves with the conductive components of the setup. The electrochemical performance of the in operando electrolysis setup is compared with a standard [Formula: see text] electrolysis cell. The small cell geometry impedes the release of gaseous products, and thus it is primarily suited for current densities below 1 mA cm [Formula: see text] . The effect of conductive components on [Formula: see text] C NMR experiments was studied using a [Formula: see text] -saturated solution of aqueous bicarbonate electrolyte. Despite the [Formula: see text] field distortions caused by the electrodes, a proper shimming could be attained, and line widths of ca. 1 Hz were achieved. This enables investigations in the sub-Hertz range by NMR spectroscopy. High-resolution [Formula: see text] C NMR and relaxation time measurements proved to be sensitive to changes in the sample. It was found that the dynamics of the bicarbonate electrolyte varies not only due to interactions with the silver electrode, which leads to the formation of an electrical double layer and catalyzes the exchange reaction between [Formula: see text] and [Formula: see text] , but also due to interactions with the electrochemical setup. This highlights the necessity of a step-by-step experiment design for a mechanistic understanding of processes occurring during electrochemical [Formula: see text] reduction.