Cargando…
Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket
It was recently reported (Xie et al., 2022) that the Abelson tyrosine kinase (Abl) ATP-site inhibitor imatinib also binds to Abl's myristoyl binding pocket, which is the target of allosteric Abl inhibitors. This was based on a crystal structure of a truncated Abl kinase domain construct in comp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Copernicus GmbH
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539847/ https://www.ncbi.nlm.nih.gov/pubmed/37905178 http://dx.doi.org/10.5194/mr-3-91-2022 |
_version_ | 1785113591431561216 |
---|---|
author | Grzesiek, Stephan Paladini, Johannes Habazettl, Judith Sonti, Rajesh |
author_facet | Grzesiek, Stephan Paladini, Johannes Habazettl, Judith Sonti, Rajesh |
author_sort | Grzesiek, Stephan |
collection | PubMed |
description | It was recently reported (Xie et al., 2022) that the Abelson tyrosine kinase (Abl) ATP-site inhibitor imatinib also binds to Abl's myristoyl binding pocket, which is the target of allosteric Abl inhibitors. This was based on a crystal structure of a truncated Abl kinase domain construct in complex with imatinib bound to the allosteric site as well as further isothermal titration calorimetry (ITC), NMR, and kinase activity data. Although imatinib's affinity for the allosteric site is significantly weaker (10 [Formula: see text] M) than for the ATP site (10 nM), imatinib binding to the allosteric site may disassemble the regulatory core of Abl, thereby stimulating kinase activity, in particular for Abl mutants with reduced imatinib ATP-site affinity. It was argued that the previously observed imatinib-induced opening of the Abl regulatory core (Skora et al., 2013; Sonti et al., 2018) may be caused by the binding of imatinib to the allosteric site and not to the ATP site. We show here that this is not the case but that indeed imatinib binding to the ATP site induces the opening of the regulatory core at nanomolar concentrations. This agrees with findings that other type-II ATP-site inhibitors (nilotinib, ponatinib) disassemble the regulatory core despite demonstrated negligible binding to the allosteric site. |
format | Online Article Text |
id | pubmed-10539847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Copernicus GmbH |
record_format | MEDLINE/PubMed |
spelling | pubmed-105398472023-10-30 Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket Grzesiek, Stephan Paladini, Johannes Habazettl, Judith Sonti, Rajesh Magn Reson (Gott) Research Article It was recently reported (Xie et al., 2022) that the Abelson tyrosine kinase (Abl) ATP-site inhibitor imatinib also binds to Abl's myristoyl binding pocket, which is the target of allosteric Abl inhibitors. This was based on a crystal structure of a truncated Abl kinase domain construct in complex with imatinib bound to the allosteric site as well as further isothermal titration calorimetry (ITC), NMR, and kinase activity data. Although imatinib's affinity for the allosteric site is significantly weaker (10 [Formula: see text] M) than for the ATP site (10 nM), imatinib binding to the allosteric site may disassemble the regulatory core of Abl, thereby stimulating kinase activity, in particular for Abl mutants with reduced imatinib ATP-site affinity. It was argued that the previously observed imatinib-induced opening of the Abl regulatory core (Skora et al., 2013; Sonti et al., 2018) may be caused by the binding of imatinib to the allosteric site and not to the ATP site. We show here that this is not the case but that indeed imatinib binding to the ATP site induces the opening of the regulatory core at nanomolar concentrations. This agrees with findings that other type-II ATP-site inhibitors (nilotinib, ponatinib) disassemble the regulatory core despite demonstrated negligible binding to the allosteric site. Copernicus GmbH 2022-05-20 /pmc/articles/PMC10539847/ /pubmed/37905178 http://dx.doi.org/10.5194/mr-3-91-2022 Text en Copyright: © 2022 Stephan Grzesiek et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Article Grzesiek, Stephan Paladini, Johannes Habazettl, Judith Sonti, Rajesh Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket |
title | Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket |
title_full | Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket |
title_fullStr | Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket |
title_full_unstemmed | Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket |
title_short | Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket |
title_sort | imatinib disassembles the regulatory core of abelson kinase by binding to its atp site and not by binding to its myristoyl pocket |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539847/ https://www.ncbi.nlm.nih.gov/pubmed/37905178 http://dx.doi.org/10.5194/mr-3-91-2022 |
work_keys_str_mv | AT grzesiekstephan imatinibdisassemblestheregulatorycoreofabelsonkinasebybindingtoitsatpsiteandnotbybindingtoitsmyristoylpocket AT paladinijohannes imatinibdisassemblestheregulatorycoreofabelsonkinasebybindingtoitsatpsiteandnotbybindingtoitsmyristoylpocket AT habazettljudith imatinibdisassemblestheregulatorycoreofabelsonkinasebybindingtoitsatpsiteandnotbybindingtoitsmyristoylpocket AT sontirajesh imatinibdisassemblestheregulatorycoreofabelsonkinasebybindingtoitsatpsiteandnotbybindingtoitsmyristoylpocket |