Cargando…
Direct Conversion of Methane to Ethylene and Acetylene over an Iron-Based Metal–Organic Framework
[Image: see text] Conversion of methane (CH(4)) to ethylene (C(2)H(4)) and/or acetylene (C(2)H(2)) enables routes to a wide range of products directly from natural gas. However, high reaction temperatures and pressures are often required to activate and convert CH(4) controllably, and separating C(2...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540182/ https://www.ncbi.nlm.nih.gov/pubmed/37722104 http://dx.doi.org/10.1021/jacs.3c03935 |
_version_ | 1785113660591439872 |
---|---|
author | Ma, Yujie Han, Xue Xu, Shaojun Li, Zhe Lu, Wanpeng An, Bing Lee, Daniel Chansai, Sarayute Sheveleva, Alena M. Wang, Zi Chen, Yinlin Li, Jiangnan Li, Weiyao Cai, Rongsheng da Silva, Ivan Cheng, Yongqiang Daemen, Luke L. Tuna, Floriana McInnes, Eric J. L. Hughes, Lewis Manuel, Pascal Ramirez-Cuesta, Anibal J. Haigh, Sarah J. Hardacre, Christopher Schröder, Martin Yang, Sihai |
author_facet | Ma, Yujie Han, Xue Xu, Shaojun Li, Zhe Lu, Wanpeng An, Bing Lee, Daniel Chansai, Sarayute Sheveleva, Alena M. Wang, Zi Chen, Yinlin Li, Jiangnan Li, Weiyao Cai, Rongsheng da Silva, Ivan Cheng, Yongqiang Daemen, Luke L. Tuna, Floriana McInnes, Eric J. L. Hughes, Lewis Manuel, Pascal Ramirez-Cuesta, Anibal J. Haigh, Sarah J. Hardacre, Christopher Schröder, Martin Yang, Sihai |
author_sort | Ma, Yujie |
collection | PubMed |
description | [Image: see text] Conversion of methane (CH(4)) to ethylene (C(2)H(4)) and/or acetylene (C(2)H(2)) enables routes to a wide range of products directly from natural gas. However, high reaction temperatures and pressures are often required to activate and convert CH(4) controllably, and separating C(2+) products from unreacted CH(4) can be challenging. Here, we report the direct conversion of CH(4) to C(2)H(4) and C(2)H(2) driven by non-thermal plasma under ambient (25 °C and 1 atm) and flow conditions over a metal–organic framework material, MFM-300(Fe). The selectivity for the formation of C(2)H(4) and C(2)H(2) reaches 96% with a high time yield of 334 μmol g(cat)(–1) h(–1). At a conversion of 10%, the selectivity to C(2+) hydrocarbons and time yield exceed 98% and 2056 μmol g(cat)(–1) h(–1), respectively, representing a new benchmark for conversion of CH(4). In situ neutron powder diffraction, inelastic neutron scattering and solid-state nuclear magnetic resonance, electron paramagnetic resonance (EPR), and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modeling studies, reveal the crucial role of Fe–O(H)–Fe sites in activating CH(4) and stabilizing reaction intermediates via the formation of an Fe–O(CH(3))–Fe adduct. In addition, a cascade fixed-bed system has been developed to achieve online separation of C(2)H(4) and C(2)H(2) from unreacted CH(4) for direct use. Integrating the processes of CH(4) activation, conversion, and product separation within one system opens a new avenue for natural gas utility, bridging the gap between fundamental studies and practical applications in this area. |
format | Online Article Text |
id | pubmed-10540182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105401822023-09-30 Direct Conversion of Methane to Ethylene and Acetylene over an Iron-Based Metal–Organic Framework Ma, Yujie Han, Xue Xu, Shaojun Li, Zhe Lu, Wanpeng An, Bing Lee, Daniel Chansai, Sarayute Sheveleva, Alena M. Wang, Zi Chen, Yinlin Li, Jiangnan Li, Weiyao Cai, Rongsheng da Silva, Ivan Cheng, Yongqiang Daemen, Luke L. Tuna, Floriana McInnes, Eric J. L. Hughes, Lewis Manuel, Pascal Ramirez-Cuesta, Anibal J. Haigh, Sarah J. Hardacre, Christopher Schröder, Martin Yang, Sihai J Am Chem Soc [Image: see text] Conversion of methane (CH(4)) to ethylene (C(2)H(4)) and/or acetylene (C(2)H(2)) enables routes to a wide range of products directly from natural gas. However, high reaction temperatures and pressures are often required to activate and convert CH(4) controllably, and separating C(2+) products from unreacted CH(4) can be challenging. Here, we report the direct conversion of CH(4) to C(2)H(4) and C(2)H(2) driven by non-thermal plasma under ambient (25 °C and 1 atm) and flow conditions over a metal–organic framework material, MFM-300(Fe). The selectivity for the formation of C(2)H(4) and C(2)H(2) reaches 96% with a high time yield of 334 μmol g(cat)(–1) h(–1). At a conversion of 10%, the selectivity to C(2+) hydrocarbons and time yield exceed 98% and 2056 μmol g(cat)(–1) h(–1), respectively, representing a new benchmark for conversion of CH(4). In situ neutron powder diffraction, inelastic neutron scattering and solid-state nuclear magnetic resonance, electron paramagnetic resonance (EPR), and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modeling studies, reveal the crucial role of Fe–O(H)–Fe sites in activating CH(4) and stabilizing reaction intermediates via the formation of an Fe–O(CH(3))–Fe adduct. In addition, a cascade fixed-bed system has been developed to achieve online separation of C(2)H(4) and C(2)H(2) from unreacted CH(4) for direct use. Integrating the processes of CH(4) activation, conversion, and product separation within one system opens a new avenue for natural gas utility, bridging the gap between fundamental studies and practical applications in this area. American Chemical Society 2023-09-18 /pmc/articles/PMC10540182/ /pubmed/37722104 http://dx.doi.org/10.1021/jacs.3c03935 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Ma, Yujie Han, Xue Xu, Shaojun Li, Zhe Lu, Wanpeng An, Bing Lee, Daniel Chansai, Sarayute Sheveleva, Alena M. Wang, Zi Chen, Yinlin Li, Jiangnan Li, Weiyao Cai, Rongsheng da Silva, Ivan Cheng, Yongqiang Daemen, Luke L. Tuna, Floriana McInnes, Eric J. L. Hughes, Lewis Manuel, Pascal Ramirez-Cuesta, Anibal J. Haigh, Sarah J. Hardacre, Christopher Schröder, Martin Yang, Sihai Direct Conversion of Methane to Ethylene and Acetylene over an Iron-Based Metal–Organic Framework |
title | Direct Conversion of
Methane to Ethylene and Acetylene
over an Iron-Based Metal–Organic Framework |
title_full | Direct Conversion of
Methane to Ethylene and Acetylene
over an Iron-Based Metal–Organic Framework |
title_fullStr | Direct Conversion of
Methane to Ethylene and Acetylene
over an Iron-Based Metal–Organic Framework |
title_full_unstemmed | Direct Conversion of
Methane to Ethylene and Acetylene
over an Iron-Based Metal–Organic Framework |
title_short | Direct Conversion of
Methane to Ethylene and Acetylene
over an Iron-Based Metal–Organic Framework |
title_sort | direct conversion of
methane to ethylene and acetylene
over an iron-based metal–organic framework |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540182/ https://www.ncbi.nlm.nih.gov/pubmed/37722104 http://dx.doi.org/10.1021/jacs.3c03935 |
work_keys_str_mv | AT mayujie directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT hanxue directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT xushaojun directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT lizhe directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT luwanpeng directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT anbing directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT leedaniel directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT chansaisarayute directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT shevelevaalenam directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT wangzi directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT chenyinlin directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT lijiangnan directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT liweiyao directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT cairongsheng directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT dasilvaivan directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT chengyongqiang directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT daemenlukel directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT tunafloriana directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT mcinnesericjl directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT hugheslewis directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT manuelpascal directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT ramirezcuestaanibalj directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT haighsarahj directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT hardacrechristopher directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT schrodermartin directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework AT yangsihai directconversionofmethanetoethyleneandacetyleneoveranironbasedmetalorganicframework |