Cargando…
Development and external validation of a prognostic tool for nonsevere COVID-19 inpatients
To develop a machine learning model and nomogram to predict the probability of persistent virus shedding (PVS) in hospitalized patients with coronavirus disease 2019 (COVID-19), the clinical symptoms and signs, laboratory parameters, cytokines, and immune cell data of 429 patients with nonsevere COV...
Autores principales: | Luo, Ensi, Zhong, Qingyang, Wen, Yongtao, Cai, Jie, Xie, Xia, Zhou, Lingjuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540186/ https://www.ncbi.nlm.nih.gov/pubmed/37202367 http://dx.doi.org/10.1017/S0950268823000717 |
Ejemplares similares
-
Development and Validation of a Nomogram for Predicting the Disease Progression of Nonsevere Coronavirus Disease 2019
por: Li, Xue-lian, et al.
Publicado: (2021) -
Prognostic nomogram on admission predicting progression for patients with nonsevere COVID-19
por: Wang, Zhi, et al.
Publicado: (2021) -
A Prognostic Model for the Respiratory Function of Patients with Nonsevere Pulmonary Infection Based on Breathing Exercises and Acupuncture Therapy: Development and Validation
por: Shi, Yulin, et al.
Publicado: (2022) -
A Multimodality Machine Learning Approach to Differentiate Severe and Nonsevere COVID-19: Model Development and Validation
por: Chen, Yuanfang, et al.
Publicado: (2021) -
The bleeding phenotype in people with nonsevere hemophilia
por: Kloosterman, Fabienne R., et al.
Publicado: (2022)