Cargando…

Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion

[Image: see text] Graphene nanoribbons are one-dimensional stripes of graphene with width- and edge-structure-dependent electronic properties. They can be synthesized bottom-up in solution to obtain precise ribbon geometries. Here we investigate the optical properties of solution-synthesized 9-armch...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindenthal, Sebastian, Fazzi, Daniele, Zorn, Nicolas F., El Yumin, Abdurrahman Ali, Settele, Simon, Weidinger, Britta, Blasco, Eva, Zaumseil, Jana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540269/
https://www.ncbi.nlm.nih.gov/pubmed/37695780
http://dx.doi.org/10.1021/acsnano.3c05246
Descripción
Sumario:[Image: see text] Graphene nanoribbons are one-dimensional stripes of graphene with width- and edge-structure-dependent electronic properties. They can be synthesized bottom-up in solution to obtain precise ribbon geometries. Here we investigate the optical properties of solution-synthesized 9-armchair graphene nanoribbons (9-aGNRs) that are stabilized as dispersions in organic solvents and further fractionated by liquid cascade centrifugation (LCC). Absorption and photoluminescence spectroscopy reveal two near-infrared absorption and emission peaks whose ratios depend on the LCC fraction. Low-temperature single-nanoribbon photoluminescence spectra suggest the presence of two different nanoribbon species. Based on density functional theory (DFT) and time-dependent DFT calculations, the lowest energy transition can be assigned to pristine 9-aGNRs, while 9-aGNRs with edge-defects, caused by incomplete graphitization, result in more blue-shifted transitions and higher Raman D/G-mode ratios. Hole doping of 9-aGNR dispersions with the electron acceptor F(4)TCNQ leads to concentration dependent bleaching and quenching of the main absorption and emission bands and the appearance of red-shifted, charge-induced absorption features but no additional emission peaks, thus indicating the formation of polarons instead of the predicted trions (charged excitons) in doped 9-aGNRs.