Cargando…

A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime

[Image: see text] Thermosets present sustainability challenges that could potentially be addressed through the design of deconstructable variants with tunable properties; however, the combinatorial space of possible thermoset molecular building blocks (e.g., monomers, cross-linkers, and additives) a...

Descripción completa

Detalles Bibliográficos
Autores principales: AlFaraj, Yasmeen S., Mohapatra, Somesh, Shieh, Peyton, Husted, Keith E. L., Ivanoff, Douglass G., Lloyd, Evan M., Cooper, Julian C., Dai, Yutong, Singhal, Avni P., Moore, Jeffrey S., Sottos, Nancy R., Gomez-Bombarelli, Rafael, Johnson, Jeremiah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540282/
https://www.ncbi.nlm.nih.gov/pubmed/37780353
http://dx.doi.org/10.1021/acscentsci.3c00502
_version_ 1785113680471392256
author AlFaraj, Yasmeen S.
Mohapatra, Somesh
Shieh, Peyton
Husted, Keith E. L.
Ivanoff, Douglass G.
Lloyd, Evan M.
Cooper, Julian C.
Dai, Yutong
Singhal, Avni P.
Moore, Jeffrey S.
Sottos, Nancy R.
Gomez-Bombarelli, Rafael
Johnson, Jeremiah A.
author_facet AlFaraj, Yasmeen S.
Mohapatra, Somesh
Shieh, Peyton
Husted, Keith E. L.
Ivanoff, Douglass G.
Lloyd, Evan M.
Cooper, Julian C.
Dai, Yutong
Singhal, Avni P.
Moore, Jeffrey S.
Sottos, Nancy R.
Gomez-Bombarelli, Rafael
Johnson, Jeremiah A.
author_sort AlFaraj, Yasmeen S.
collection PubMed
description [Image: see text] Thermosets present sustainability challenges that could potentially be addressed through the design of deconstructable variants with tunable properties; however, the combinatorial space of possible thermoset molecular building blocks (e.g., monomers, cross-linkers, and additives) and manufacturing conditions is vast, and predictive knowledge for how combinations of these molecular components translate to bulk thermoset properties is lacking. Data science could overcome these problems, but computational methods are difficult to apply to multicomponent, amorphous, statistical copolymer materials for which little data exist. Here, leveraging a data set with 101 examples, we introduce a closed-loop experimental, machine learning (ML), and virtual screening strategy to enable predictions of the glass transition temperature (T(g)) of polydicyclopentadiene (pDCPD) thermosets containing cleavable bifunctional silyl ether (BSE) comonomers and/or cross-linkers with varied compositions and loadings. Molecular features and formulation variables are used as model inputs, and uncertainty is quantified through model ensembling, which together with heavy regularization helps to avoid overfitting and ultimately achieves predictions within <15 °C for thermosets with compositionally diverse BSEs. This work offers a path to predicting the properties of thermosets based on their molecular building blocks, which may accelerate the discovery of promising plastics, rubbers, and composites with improved functionality and controlled deconstructability.
format Online
Article
Text
id pubmed-10540282
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-105402822023-09-30 A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime AlFaraj, Yasmeen S. Mohapatra, Somesh Shieh, Peyton Husted, Keith E. L. Ivanoff, Douglass G. Lloyd, Evan M. Cooper, Julian C. Dai, Yutong Singhal, Avni P. Moore, Jeffrey S. Sottos, Nancy R. Gomez-Bombarelli, Rafael Johnson, Jeremiah A. ACS Cent Sci [Image: see text] Thermosets present sustainability challenges that could potentially be addressed through the design of deconstructable variants with tunable properties; however, the combinatorial space of possible thermoset molecular building blocks (e.g., monomers, cross-linkers, and additives) and manufacturing conditions is vast, and predictive knowledge for how combinations of these molecular components translate to bulk thermoset properties is lacking. Data science could overcome these problems, but computational methods are difficult to apply to multicomponent, amorphous, statistical copolymer materials for which little data exist. Here, leveraging a data set with 101 examples, we introduce a closed-loop experimental, machine learning (ML), and virtual screening strategy to enable predictions of the glass transition temperature (T(g)) of polydicyclopentadiene (pDCPD) thermosets containing cleavable bifunctional silyl ether (BSE) comonomers and/or cross-linkers with varied compositions and loadings. Molecular features and formulation variables are used as model inputs, and uncertainty is quantified through model ensembling, which together with heavy regularization helps to avoid overfitting and ultimately achieves predictions within <15 °C for thermosets with compositionally diverse BSEs. This work offers a path to predicting the properties of thermosets based on their molecular building blocks, which may accelerate the discovery of promising plastics, rubbers, and composites with improved functionality and controlled deconstructability. American Chemical Society 2023-09-14 /pmc/articles/PMC10540282/ /pubmed/37780353 http://dx.doi.org/10.1021/acscentsci.3c00502 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle AlFaraj, Yasmeen S.
Mohapatra, Somesh
Shieh, Peyton
Husted, Keith E. L.
Ivanoff, Douglass G.
Lloyd, Evan M.
Cooper, Julian C.
Dai, Yutong
Singhal, Avni P.
Moore, Jeffrey S.
Sottos, Nancy R.
Gomez-Bombarelli, Rafael
Johnson, Jeremiah A.
A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime
title A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime
title_full A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime
title_fullStr A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime
title_full_unstemmed A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime
title_short A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime
title_sort model ensemble approach enables data-driven property prediction for chemically deconstructable thermosets in the low-data regime
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540282/
https://www.ncbi.nlm.nih.gov/pubmed/37780353
http://dx.doi.org/10.1021/acscentsci.3c00502
work_keys_str_mv AT alfarajyasmeens amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT mohapatrasomesh amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT shiehpeyton amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT hustedkeithel amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT ivanoffdouglassg amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT lloydevanm amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT cooperjulianc amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT daiyutong amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT singhalavnip amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT moorejeffreys amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT sottosnancyr amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT gomezbombarellirafael amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT johnsonjeremiaha amodelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT alfarajyasmeens modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT mohapatrasomesh modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT shiehpeyton modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT hustedkeithel modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT ivanoffdouglassg modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT lloydevanm modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT cooperjulianc modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT daiyutong modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT singhalavnip modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT moorejeffreys modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT sottosnancyr modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT gomezbombarellirafael modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime
AT johnsonjeremiaha modelensembleapproachenablesdatadrivenpropertypredictionforchemicallydeconstructablethermosetsinthelowdataregime