Cargando…
Temperature-Dependent Intensity Modulated Two-Photon Excited Fluorescence Microscopy for High Resolution Mapping of Charge Carrier Dynamics
[Image: see text] We present a temperature-dependent intensity modulated two-photon excited fluorescence microscopy technique that enables high-resolution quantitative mapping of charge carrier dynamics in perovskite microcrystal film. By disentangling the emission into harmonics of the excitation m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540292/ https://www.ncbi.nlm.nih.gov/pubmed/37780538 http://dx.doi.org/10.1021/acsphyschemau.3c00013 |
_version_ | 1785113682978537472 |
---|---|
author | Shi, Qi Kumar, Pushpendra Pullerits, Tönu |
author_facet | Shi, Qi Kumar, Pushpendra Pullerits, Tönu |
author_sort | Shi, Qi |
collection | PubMed |
description | [Image: see text] We present a temperature-dependent intensity modulated two-photon excited fluorescence microscopy technique that enables high-resolution quantitative mapping of charge carrier dynamics in perovskite microcrystal film. By disentangling the emission into harmonics of the excitation modulation frequency, we analyze the first and second order charge carrier recombination processes, including potential accumulation effects. Our approach allows for a quantitative comparison of different emission channels at a micrometer resolution. To demonstrate the effectiveness of the method, we applied it to a methylammonium lead bromide perovskite microcrystal film. We investigated the temperature-dependent modulated imaging, encompassing the exciton dissociation-association and charge carrier trapping-detrapping equilibrium. Additionally, we explored the potential freezing out of traps and the phase transition occurring at low temperatures. |
format | Online Article Text |
id | pubmed-10540292 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105402922023-09-30 Temperature-Dependent Intensity Modulated Two-Photon Excited Fluorescence Microscopy for High Resolution Mapping of Charge Carrier Dynamics Shi, Qi Kumar, Pushpendra Pullerits, Tönu ACS Phys Chem Au [Image: see text] We present a temperature-dependent intensity modulated two-photon excited fluorescence microscopy technique that enables high-resolution quantitative mapping of charge carrier dynamics in perovskite microcrystal film. By disentangling the emission into harmonics of the excitation modulation frequency, we analyze the first and second order charge carrier recombination processes, including potential accumulation effects. Our approach allows for a quantitative comparison of different emission channels at a micrometer resolution. To demonstrate the effectiveness of the method, we applied it to a methylammonium lead bromide perovskite microcrystal film. We investigated the temperature-dependent modulated imaging, encompassing the exciton dissociation-association and charge carrier trapping-detrapping equilibrium. Additionally, we explored the potential freezing out of traps and the phase transition occurring at low temperatures. American Chemical Society 2023-07-07 /pmc/articles/PMC10540292/ /pubmed/37780538 http://dx.doi.org/10.1021/acsphyschemau.3c00013 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Shi, Qi Kumar, Pushpendra Pullerits, Tönu Temperature-Dependent Intensity Modulated Two-Photon Excited Fluorescence Microscopy for High Resolution Mapping of Charge Carrier Dynamics |
title | Temperature-Dependent
Intensity Modulated Two-Photon
Excited Fluorescence Microscopy for High Resolution Mapping of Charge
Carrier Dynamics |
title_full | Temperature-Dependent
Intensity Modulated Two-Photon
Excited Fluorescence Microscopy for High Resolution Mapping of Charge
Carrier Dynamics |
title_fullStr | Temperature-Dependent
Intensity Modulated Two-Photon
Excited Fluorescence Microscopy for High Resolution Mapping of Charge
Carrier Dynamics |
title_full_unstemmed | Temperature-Dependent
Intensity Modulated Two-Photon
Excited Fluorescence Microscopy for High Resolution Mapping of Charge
Carrier Dynamics |
title_short | Temperature-Dependent
Intensity Modulated Two-Photon
Excited Fluorescence Microscopy for High Resolution Mapping of Charge
Carrier Dynamics |
title_sort | temperature-dependent
intensity modulated two-photon
excited fluorescence microscopy for high resolution mapping of charge
carrier dynamics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540292/ https://www.ncbi.nlm.nih.gov/pubmed/37780538 http://dx.doi.org/10.1021/acsphyschemau.3c00013 |
work_keys_str_mv | AT shiqi temperaturedependentintensitymodulatedtwophotonexcitedfluorescencemicroscopyforhighresolutionmappingofchargecarrierdynamics AT kumarpushpendra temperaturedependentintensitymodulatedtwophotonexcitedfluorescencemicroscopyforhighresolutionmappingofchargecarrierdynamics AT pulleritstonu temperaturedependentintensitymodulatedtwophotonexcitedfluorescencemicroscopyforhighresolutionmappingofchargecarrierdynamics |