Cargando…
AI in the Loop: functionalizing fold performance disagreement to monitor automated medical image segmentation workflows
INTRODUCTION: Methods that automatically flag poor performing predictions are drastically needed to safely implement machine learning workflows into clinical practice as well as to identify difficult cases during model training. METHODS: Disagreement between the fivefold cross-validation sub-models...
Autores principales: | Gottlich, Harrison C., Korfiatis, Panagiotis, Gregory, Adriana V., Kline, Timothy L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540615/ https://www.ncbi.nlm.nih.gov/pubmed/37780641 http://dx.doi.org/10.3389/fradi.2023.1223294 |
Ejemplares similares
-
Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning
por: Korfiatis, Panagiotis, et al.
Publicado: (2016) -
Effect of Dataset Size and Medical Image Modality on Convolutional Neural Network Model Performance for Automated Segmentation: A CT and MR Renal Tumor Imaging Study
por: Gottlich, Harrison C., et al.
Publicado: (2023) -
Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging
por: Akkus, Zeynettin, et al.
Publicado: (2015) -
Grand Challenges in AI in Radiology
por: Liu, Tianming
Publicado: (2021) -
Folded-Loop Guidewire Remodeling Technique: Catheterizing Markedly Angulated Branches during Intravascular Embolization
Publicado: (2023)