Cargando…

A paradox of bacterial persistence and antibiotic resistance: chloramphenicol acetyl transferase as a double barrel shot gun

The problematic microbial resistance to antibiotics has led to an increasing interest in bacterial persistence and its impact on infection. Nonetheless, these two mechanisms are often assessed in independent studies, and there is a lack of knowledge about their relation or possible interactions, bot...

Descripción completa

Detalles Bibliográficos
Autores principales: Alves da Silva, Ana, Silva, Inês Jesus, Arraiano, Cecília Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540939/
https://www.ncbi.nlm.nih.gov/pubmed/37781689
http://dx.doi.org/10.1093/femsml/uqad034
Descripción
Sumario:The problematic microbial resistance to antibiotics has led to an increasing interest in bacterial persistence and its impact on infection. Nonetheless, these two mechanisms are often assessed in independent studies, and there is a lack of knowledge about their relation or possible interactions, both at cellular and population levels. This work shows evidence that the insertion of the resistance gene Chloramphenicol Acetyl Transferase (cat) together with its cognate antibiotic chloramphenicol (CAM), is capable to modulate Salmonella Typhimurium persistence to several antibiotics and decrease its survival. This effect is independent of the antibiotics’ mechanisms of action or the locus of cat. RelA [p(ppGpp) syntetase] has been shown to be involved in persistence. It was recently proposed that RelA [(p)ppGpp synthetase], binds to uncharged tRNAs, forming RelA.tRNA complexes. These complexes bind to vacant A-sites in the ribosome, and this mechanism is essential for the activation of RelA. In this study, we propose that the antibiotic chloramphenicol blocks the A-site of the ribosome, hindering the binding of RelA.tRNA complexes to the ribosome thus preventing the activation of RelA and (p)ppGpp synthesis, with a consequent decrease in the level of persistence of the population. Our discovery that the concomitant use of chloramphenicol and other antibiotics in chloramphenicol resistant bacteria can decrease the persister levels can be the basis of novel therapeutics aiming to decrease the persisters and recalcitrant infections.