Cargando…
Integrating a tailored recurrent neural network with Bayesian experimental design to optimize microbial community functions
Microbiomes interact dynamically with their environment to perform exploitable functions such as production of valuable metabolites and degradation of toxic metabolites for a wide range of applications in human health, agriculture, and environmental cleanup. Developing computational models to predic...
Autores principales: | Thompson, Jaron C., Zavala, Victor M., Venturelli, Ophelia S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540976/ https://www.ncbi.nlm.nih.gov/pubmed/37773951 http://dx.doi.org/10.1371/journal.pcbi.1011436 |
Ejemplares similares
-
Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics
por: Baranwal, Mayank, et al.
Publicado: (2022) -
Scalable nonlinear programming framework for parameter estimation in dynamic biological system models
por: Shin, Sungho, et al.
Publicado: (2019) -
Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation-based Inference
por: Zaballa, Vincent D., et al.
Publicado: (2023) -
From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration
por: Oess, Timo, et al.
Publicado: (2020) -
Deciphering microbial interactions in synthetic human gut microbiome communities
por: Venturelli, Ophelia S, et al.
Publicado: (2018)