Cargando…
ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation
Autophagy induction involves extensive molecular and membrane reorganization. Despite substantial progress, the mechanism underlying autophagy initiation remains poorly understood. Here, we used quantitative photoactivated localization microscopy with single-molecule sensitivity to analyze the nanos...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541014/ https://www.ncbi.nlm.nih.gov/pubmed/37774021 http://dx.doi.org/10.1126/sciadv.adh4094 |
_version_ | 1785113832943779840 |
---|---|
author | Banerjee, Chiranjib Mehra, Dushyant Song, Daihyun Mancebo, Angel Park, Ji-Man Kim, Do-Hyung Puchner, Elias M. |
author_facet | Banerjee, Chiranjib Mehra, Dushyant Song, Daihyun Mancebo, Angel Park, Ji-Man Kim, Do-Hyung Puchner, Elias M. |
author_sort | Banerjee, Chiranjib |
collection | PubMed |
description | Autophagy induction involves extensive molecular and membrane reorganization. Despite substantial progress, the mechanism underlying autophagy initiation remains poorly understood. Here, we used quantitative photoactivated localization microscopy with single-molecule sensitivity to analyze the nanoscopic distribution of endogenous ULK1, the kinase that triggers autophagy. Under amino acid starvation, ULK1 formed large clusters containing up to 161 molecules at the endoplasmic reticulum. Cross-correlation analysis revealed that ULK1 clusters engaging in autophagosome formation require 30 or more molecules. The ULK1 structures with more than the threshold number contained varying levels of Atg13, Atg14, Atg16, LC3B, GEC1, and WIPI2. We found that ULK1 activity is dispensable for the initial clustering of ULK1, but necessary for the subsequent expansion of the clusters, which involves interaction with Atg14, Atg16, and LC3B and relies on Vps34 activity. This quantitative analysis at the single-molecule level has provided unprecedented insights into the behavior of ULK1 during autophagy initiation. |
format | Online Article Text |
id | pubmed-10541014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105410142023-10-01 ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation Banerjee, Chiranjib Mehra, Dushyant Song, Daihyun Mancebo, Angel Park, Ji-Man Kim, Do-Hyung Puchner, Elias M. Sci Adv Biomedicine and Life Sciences Autophagy induction involves extensive molecular and membrane reorganization. Despite substantial progress, the mechanism underlying autophagy initiation remains poorly understood. Here, we used quantitative photoactivated localization microscopy with single-molecule sensitivity to analyze the nanoscopic distribution of endogenous ULK1, the kinase that triggers autophagy. Under amino acid starvation, ULK1 formed large clusters containing up to 161 molecules at the endoplasmic reticulum. Cross-correlation analysis revealed that ULK1 clusters engaging in autophagosome formation require 30 or more molecules. The ULK1 structures with more than the threshold number contained varying levels of Atg13, Atg14, Atg16, LC3B, GEC1, and WIPI2. We found that ULK1 activity is dispensable for the initial clustering of ULK1, but necessary for the subsequent expansion of the clusters, which involves interaction with Atg14, Atg16, and LC3B and relies on Vps34 activity. This quantitative analysis at the single-molecule level has provided unprecedented insights into the behavior of ULK1 during autophagy initiation. American Association for the Advancement of Science 2023-09-29 /pmc/articles/PMC10541014/ /pubmed/37774021 http://dx.doi.org/10.1126/sciadv.adh4094 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Biomedicine and Life Sciences Banerjee, Chiranjib Mehra, Dushyant Song, Daihyun Mancebo, Angel Park, Ji-Man Kim, Do-Hyung Puchner, Elias M. ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation |
title | ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation |
title_full | ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation |
title_fullStr | ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation |
title_full_unstemmed | ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation |
title_short | ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation |
title_sort | ulk1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation |
topic | Biomedicine and Life Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541014/ https://www.ncbi.nlm.nih.gov/pubmed/37774021 http://dx.doi.org/10.1126/sciadv.adh4094 |
work_keys_str_mv | AT banerjeechiranjib ulk1formsdistinctoligomericstatesandnanoscopicstructuresduringautophagyinitiation AT mehradushyant ulk1formsdistinctoligomericstatesandnanoscopicstructuresduringautophagyinitiation AT songdaihyun ulk1formsdistinctoligomericstatesandnanoscopicstructuresduringautophagyinitiation AT manceboangel ulk1formsdistinctoligomericstatesandnanoscopicstructuresduringautophagyinitiation AT parkjiman ulk1formsdistinctoligomericstatesandnanoscopicstructuresduringautophagyinitiation AT kimdohyung ulk1formsdistinctoligomericstatesandnanoscopicstructuresduringautophagyinitiation AT puchnereliasm ulk1formsdistinctoligomericstatesandnanoscopicstructuresduringautophagyinitiation |