Cargando…
A multicenter study on the application of artificial intelligence radiological characteristics to predict prognosis after percutaneous nephrolithotomy
BACKGROUND: A model to predict preoperative outcomes after percutaneous nephrolithotomy (PCNL) with renal staghorn stones is developed to be an essential preoperative consultation tool. OBJECTIVE: In this study, we constructed a predictive model for one-time stone clearance after PCNL for renal stag...
Autores principales: | Hou, Jian, Wen, Xiangyang, Qu, Genyi, Chen, Wenwen, Xu, Xiang, Wu, Guoqing, Ji, Ruidong, Wei, Genggeng, Liang, Tuo, Huang, Wenyan, Xiong, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541026/ https://www.ncbi.nlm.nih.gov/pubmed/37780621 http://dx.doi.org/10.3389/fendo.2023.1184608 |
Ejemplares similares
-
Deep learning-based artificial intelligence model for classification of vertebral compression fractures: A multicenter diagnostic study
por: Xu, Fan, et al.
Publicado: (2023) -
Tubeless percutaneous nephrolithotomy
por: Agrawal, Madhu Sudan, et al.
Publicado: (2010) -
Percutaneous Nephrolithotomy in Children
por: DeMarco, Romano T.
Publicado: (2011) -
Artificial intelligence in radiology
por: Jin, Dakai, et al.
Publicado: (2021) -
Percutaneous nephrolithotomy for pediatric urolithiasis
por: Ganpule, Arvind P., et al.
Publicado: (2010)