Cargando…

An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes

Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchie...

Descripción completa

Detalles Bibliográficos
Autores principales: McCafferty, Caitlyn L., Papoulas, Ophelia, Lee, Chanjae, Bui, Khanh Huy, Taylor, David W., Marcotte, Edward M., Wallingford, John B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541116/
https://www.ncbi.nlm.nih.gov/pubmed/37781579
http://dx.doi.org/10.1101/2023.07.09.548259
_version_ 1785113847645863936
author McCafferty, Caitlyn L.
Papoulas, Ophelia
Lee, Chanjae
Bui, Khanh Huy
Taylor, David W.
Marcotte, Edward M.
Wallingford, John B.
author_facet McCafferty, Caitlyn L.
Papoulas, Ophelia
Lee, Chanjae
Bui, Khanh Huy
Taylor, David W.
Marcotte, Edward M.
Wallingford, John B.
author_sort McCafferty, Caitlyn L.
collection PubMed
description Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease.
format Online
Article
Text
id pubmed-10541116
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105411162023-10-01 An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes McCafferty, Caitlyn L. Papoulas, Ophelia Lee, Chanjae Bui, Khanh Huy Taylor, David W. Marcotte, Edward M. Wallingford, John B. bioRxiv Article Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease. Cold Spring Harbor Laboratory 2023-09-21 /pmc/articles/PMC10541116/ /pubmed/37781579 http://dx.doi.org/10.1101/2023.07.09.548259 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
McCafferty, Caitlyn L.
Papoulas, Ophelia
Lee, Chanjae
Bui, Khanh Huy
Taylor, David W.
Marcotte, Edward M.
Wallingford, John B.
An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes
title An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes
title_full An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes
title_fullStr An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes
title_full_unstemmed An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes
title_short An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes
title_sort amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541116/
https://www.ncbi.nlm.nih.gov/pubmed/37781579
http://dx.doi.org/10.1101/2023.07.09.548259
work_keys_str_mv AT mccaffertycaitlynl anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT papoulasophelia anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT leechanjae anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT buikhanhhuy anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT taylordavidw anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT marcotteedwardm anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT wallingfordjohnb anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT mccaffertycaitlynl aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT papoulasophelia aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT leechanjae aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT buikhanhhuy aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT taylordavidw aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT marcotteedwardm aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes
AT wallingfordjohnb aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes