Cargando…
An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchie...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541116/ https://www.ncbi.nlm.nih.gov/pubmed/37781579 http://dx.doi.org/10.1101/2023.07.09.548259 |
_version_ | 1785113847645863936 |
---|---|
author | McCafferty, Caitlyn L. Papoulas, Ophelia Lee, Chanjae Bui, Khanh Huy Taylor, David W. Marcotte, Edward M. Wallingford, John B. |
author_facet | McCafferty, Caitlyn L. Papoulas, Ophelia Lee, Chanjae Bui, Khanh Huy Taylor, David W. Marcotte, Edward M. Wallingford, John B. |
author_sort | McCafferty, Caitlyn L. |
collection | PubMed |
description | Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease. |
format | Online Article Text |
id | pubmed-10541116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105411162023-10-01 An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes McCafferty, Caitlyn L. Papoulas, Ophelia Lee, Chanjae Bui, Khanh Huy Taylor, David W. Marcotte, Edward M. Wallingford, John B. bioRxiv Article Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease. Cold Spring Harbor Laboratory 2023-09-21 /pmc/articles/PMC10541116/ /pubmed/37781579 http://dx.doi.org/10.1101/2023.07.09.548259 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article McCafferty, Caitlyn L. Papoulas, Ophelia Lee, Chanjae Bui, Khanh Huy Taylor, David W. Marcotte, Edward M. Wallingford, John B. An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes |
title | An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes |
title_full | An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes |
title_fullStr | An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes |
title_full_unstemmed | An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes |
title_short | An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes |
title_sort | amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541116/ https://www.ncbi.nlm.nih.gov/pubmed/37781579 http://dx.doi.org/10.1101/2023.07.09.548259 |
work_keys_str_mv | AT mccaffertycaitlynl anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT papoulasophelia anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT leechanjae anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT buikhanhhuy anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT taylordavidw anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT marcotteedwardm anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT wallingfordjohnb anaminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT mccaffertycaitlynl aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT papoulasophelia aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT leechanjae aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT buikhanhhuy aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT taylordavidw aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT marcotteedwardm aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes AT wallingfordjohnb aminoacidresolutioninteractomeformotileciliailluminatesthestructureandfunctionofciliopathyproteincomplexes |