Cargando…

NLRP12 downregulates the Wnt/β-catenin pathway via interaction with STK38 to suppress colorectal cancer

Colorectal cancer (CRC) at advanced stages is rarely curable, underscoring the importance of exploring the mechanism of CRC progression and invasion. NOD-like receptor family member NLRP12 was shown to suppress colorectal tumorigenesis, but the precise mechanism was unknown. Here, we demonstrate tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Shahanshah, Kwak, Youn-Tae, Peng, Lan, Hu, Shuiqing, Cantarel, Brandi L., Lewis, Cheryl M., Gao, Yunpeng, Mani, Ram S., Kanneganti, Thirumala-Devi, Zaki, Hasan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541192/
https://www.ncbi.nlm.nih.gov/pubmed/37581937
http://dx.doi.org/10.1172/JCI166295
Descripción
Sumario:Colorectal cancer (CRC) at advanced stages is rarely curable, underscoring the importance of exploring the mechanism of CRC progression and invasion. NOD-like receptor family member NLRP12 was shown to suppress colorectal tumorigenesis, but the precise mechanism was unknown. Here, we demonstrate that invasive adenocarcinoma development in Nlrp12-deficient mice is associated with elevated expression of genes involved in proliferation, matrix degradation, and epithelial-mesenchymal transition. Signaling pathway analysis revealed higher activation of the Wnt/β-catenin pathway, but not NF-κB and MAPK pathways, in the Nlrp12-deficient tumors. Using Nlrp12–conditional knockout mice, we revealed that NLRP12 downregulates β-catenin activation in intestinal epithelial cells, thereby suppressing colorectal tumorigenesis. Consistent with this, Nlrp12-deficient intestinal organoids and CRC cells showed increased proliferation, accompanied by higher activation of β-catenin in vitro. With proteomic studies, we identified STK38 as an interacting partner of NLRP12 involved in the inhibition of phosphorylation of GSK3β, leading to the degradation of β-catenin. Consistently, the expression of NLRP12 was significantly reduced, while p-GSK3β and β-catenin were upregulated in mouse and human colorectal tumor tissues. In summary, NLRP12 is a potent negative regulator of the Wnt/β-catenin pathway, and the NLRP12/STK38/GSK3β signaling axis could be a promising therapeutic target for CRC.