Cargando…
Core and penumbra estimation using deep learning-based AIF in association with clinical measures in computed tomography perfusion (CTP)
OBJECTIVES: To investigate whether utilizing a convolutional neural network (CNN)-based arterial input function (AIF) improves the volumetric estimation of core and penumbra in association with clinical measures in stroke patients. METHODS: The study included 160 acute ischemic stroke patients (male...
Autores principales: | Bal, Sukhdeep Singh, Yang, Fan-pei Gloria, Chi, Nai-Fang, Yin, Jiu Haw, Wang, Tao-Jung, Peng, Giia Sheun, Chen, Ke, Hsu, Ching-Chi, Chen, Chang-I |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541385/ https://www.ncbi.nlm.nih.gov/pubmed/37775600 http://dx.doi.org/10.1186/s13244-023-01472-z |
Ejemplares similares
-
Optimal Scaling Approaches for Perfusion MRI with Distorted Arterial Input Function (AIF) in Patients with Ischemic Stroke
por: Bal, Sukhdeep Singh, et al.
Publicado: (2022) -
Optimal CT perfusion thresholds for core and penumbra in acute posterior circulation infarction
por: Edwards, Leon Stephen, et al.
Publicado: (2023) -
The effect of software post-processing applications on identification of the penumbra and core within the ischaemic region in perfusion computed tomography
por: Gleń, Agnieszka, et al.
Publicado: (2019) -
Machine learning segmentation of core and penumbra from acute stroke CT perfusion data
por: Werdiger, Freda, et al.
Publicado: (2023) -
Defining Core and Penumbra in Ischemic Stroke: A Voxel- and Volume-Based Analysis of Whole Brain CT Perfusion
por: Yu, Yannan, et al.
Publicado: (2016)