Cargando…
Inverse design of optical lenses enabled by generative flow-based invertible neural networks
Developing an optical geometric lens system in a conventional way involves substantial effort from designers to devise and assess the lens specifications. An expeditious and effortless acquisition of lens parameters satisfying the desired lens performance requirements can ease the workload by avoidi...
Autores principales: | Luo, Menglong, Lee, Sang-Shin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541419/ https://www.ncbi.nlm.nih.gov/pubmed/37775534 http://dx.doi.org/10.1038/s41598-023-43698-3 |
Ejemplares similares
-
Multi-Objective Optimization of Liquid Silica Array Lenses Based on Latin Hypercube Sampling and Constrained Generative Inverse Design Networks
por: Chang, Hanjui, et al.
Publicado: (2023) -
An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning
por: Xiao, Hang, et al.
Publicado: (2023) -
Inverse design of 3d molecular structures with conditional generative neural networks
por: Gebauer, Niklas W. A., et al.
Publicado: (2022) -
Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning
por: Chen, Chun‐Teh, et al.
Publicado: (2020) -
End-to-End Diverse Metasurface Design and Evaluation Using an Invertible Neural Network
por: Wang, Yunxiang, et al.
Publicado: (2023)