Cargando…
Confound-leakage: confound removal in machine learning leads to leakage
BACKGROUND: Machine learning (ML) approaches are a crucial component of modern data analysis in many fields, including epidemiology and medicine. Nonlinear ML methods often achieve accurate predictions, for instance, in personalized medicine, as they are capable of modeling complex relationships bet...
Autores principales: | Hamdan, Sami, Love, Bradley C, von Polier, Georg G, Weis, Susanne, Schwender, Holger, Eickhoff, Simon B, Patil, Kaustubh R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541796/ https://www.ncbi.nlm.nih.gov/pubmed/37776368 http://dx.doi.org/10.1093/gigascience/giad071 |
Ejemplares similares
-
Confound Removal and Normalization in Practice: A Neuroimaging Based Sex Prediction Case Study
por: More, Shammi, et al.
Publicado: (2021) -
Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates
por: Schuster, Noah A., et al.
Publicado: (2023) -
Comprehensive verbal fluency features predict executive function performance
por: Amunts, Julia, et al.
Publicado: (2021) -
Confounding
por: Andrade, Chittaranjan
Publicado: (2007) -
Removal of ineligible outcome cases reduces confounding
por: Walker, Alexander M, et al.
Publicado: (2018)