Cargando…

The vertebrate muscle superlattice: discovery, consequences, and link to geometric frustration

Early x-ray diffraction studies of muscle revealed spacings larger than the basic thick filament lattice spacing and led to a number of speculations on the mutual rotations of the filaments in the myosin lattice. The nature of the arrangements of the filaments was resolved by John Squire and Pradeep...

Descripción completa

Detalles Bibliográficos
Autores principales: Millane, Rick P., Luther, Pradeep K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541841/
https://www.ncbi.nlm.nih.gov/pubmed/37173591
http://dx.doi.org/10.1007/s10974-023-09642-8
Descripción
Sumario:Early x-ray diffraction studies of muscle revealed spacings larger than the basic thick filament lattice spacing and led to a number of speculations on the mutual rotations of the filaments in the myosin lattice. The nature of the arrangements of the filaments was resolved by John Squire and Pradeep Luther using careful electron microscopy and image analysis. The intriguing disorder in the rotations, that they termed the myosin superlattice, remained a curiosity, until work with Rick Millane and colleagues showed a connection to “geometric frustration,” a well-known phenomenon in statistical and condensed matter physics. In this review, we describe how this connection gives a satisfying physical basis for the myosin superlattice, and how recent work has shown relationships to muscle mechanical behaviour.