Cargando…
BHLHE40, a potential immune therapy target, regulated by FGD5-AS1/miR-15a-5p in pancreatic cancer
Pancreatic cancer, as one of the neoplasms with the highest degree of malignancy, has become a main disease of concerns in recent years. BHLHE40, a critical transcription factor for remodeling of the tumor immune microenvironment, has been described to be substantially increased in a variety of tumo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541890/ https://www.ncbi.nlm.nih.gov/pubmed/37773521 http://dx.doi.org/10.1038/s41598-023-43577-x |
Sumario: | Pancreatic cancer, as one of the neoplasms with the highest degree of malignancy, has become a main disease of concerns in recent years. BHLHE40, a critical transcription factor for remodeling of the tumor immune microenvironment, has been described to be substantially increased in a variety of tumor-associated immune cells. Nevertheless, the pro-cancer biological functions and underlying molecular mechanisms of BHLHE40 for pancreatic cancer and its unique microenvironment are unclear. Hereby, we investigated the pro-oncogenic role of BHLHE40 in the pancreatic cancer microenvironment by bioinformatics analysis and cell biology experiments and determined that the expression of BHLHE40 was obviously elevated in pancreatic cancer tissues than in adjacent normal tissues. In parallel, Kaplan–Meier survival analysis unveiled that lower expression of BHLHE40 was strongly associated with better prognosis of patients. Receiver operating characteristic (ROC) curve analysis confirmed the accuracy of the BHLHE40-related prediction model. Subsequent, spearman correlation analysis observed that higher expression of BHLHE40 might be involved in immunosuppression of pancreatic cancer. Silencing of BHLHE40 could inhibit proliferation, invasion, and apoptosis of pancreatic cancer in vitro and in vivo, implying that BHLHE40 is expected to be a potential therapeutic target for pancreatic cancer. In addition, we explored and validated the FGD5-AS1/miR-15a-5p axis as a potential upstream regulatory mode for high expression of BHLHE40 in pancreatic cancer. In summary, our data showed that ceRNA involved in the regulation of BHLHE40 contributes to the promotion of immunosuppressive response in pancreatic and is expected to be a diagnostic marker and potential immunotherapeutic target for pancreatic cancer. |
---|