Cargando…
YOLO object detection models can locate and classify broad groups of flower-visiting arthropods in images
Develoment of image recognition AI algorithms for flower-visiting arthropods has the potential to revolutionize the way we monitor pollinators. Ecologists need light-weight models that can be deployed in a field setting and can classify with high accuracy. We tested the performance of three deep lea...
Autores principales: | Stark, Thomas, Ştefan, Valentin, Wurm, Michael, Spanier, Robin, Taubenböck, Hannes, Knight, Tiffany M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541899/ https://www.ncbi.nlm.nih.gov/pubmed/37773202 http://dx.doi.org/10.1038/s41598-023-43482-3 |
Ejemplares similares
-
YOLO-G: Improved YOLO for cross-domain object detection
por: Wei, Jian, et al.
Publicado: (2023) -
AIE-YOLO: Auxiliary Information Enhanced YOLO for Small Object Detection
por: Yan, Bingnan, et al.
Publicado: (2022) -
Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
por: Hu, Mengzi, et al.
Publicado: (2023) -
RSI-YOLO: Object Detection Method for Remote Sensing Images Based on Improved YOLO
por: Li, Zhuang, et al.
Publicado: (2023) -
Seasonal and Diurnal Variation of Land Surface Temperature Distribution and Its Relation to Land Use/Land Cover Patterns
por: Dong, Ruirui, et al.
Publicado: (2022)