Cargando…
A multimodal radiomic machine learning approach to predict the LCK expression and clinical prognosis in high-grade serous ovarian cancer
We developed and validated a multimodal radiomic machine learning approach to noninvasively predict the expression of lymphocyte cell-specific protein-tyrosine kinase (LCK) expression and clinical prognosis of patients with high-grade serous ovarian cancer (HGSOC). We analyzed gene enrichment using...
Autores principales: | Zhan, Feng, He, Lidan, Yu, Yuanlin, Chen, Qian, Guo, Yina, Wang, Lili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541909/ https://www.ncbi.nlm.nih.gov/pubmed/37773310 http://dx.doi.org/10.1038/s41598-023-43543-7 |
Ejemplares similares
-
Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer
por: Boehm, Kevin M., et al.
Publicado: (2022) -
Identification of Prognosis Biomarkers for High-Grade Serous Ovarian Cancer Based on Stemness
por: Wang, Zhihang, et al.
Publicado: (2022) -
LCK-SafeScreen-Model: An Advanced Ensemble Machine Learning Approach for Estimating the Binding Affinity between Compounds and LCK Target
por: Cheng, Ying, et al.
Publicado: (2023) -
Feature Selection is Critical for 2-Year Prognosis in Advanced Stage High Grade Serous Ovarian Cancer by Using Machine Learning
por: Laios, Alexandros, et al.
Publicado: (2021) -
Prognostic (18)F-FDG Radiomic Features in Advanced High-Grade Serous Ovarian Cancer
por: Travaglio Morales, Daniela, et al.
Publicado: (2023)