Cargando…

Flamingo participates in multiple models of cell competition

The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Bosch, Pablo Sanchez, Cho, Bomsoo, Axelrod, Jeffrey D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542155/
https://www.ncbi.nlm.nih.gov/pubmed/37790459
http://dx.doi.org/10.1101/2023.09.24.559197
Descripción
Sumario:The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in pre-malignant cells as they grow among wildtype cells, in healthy cells to eliminate pre-malignant cells, and by supercompetitors to occupy excessive territory within wildtype tissues. “Would-be” winners that lack Fmi are unable to over-proliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well defined functions of Fmi.