Cargando…

Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics

Stimuli-responsive hydrogels have garnered significant attention as a versatile class of soft actuators. Introducing anisotropic properties, and shape-change programmability to responsive hydrogels promises a host of opportunities in the development of soft robots. Herein we report the synthesis of...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasseri, Rasool, Bouzari, Negin, Huang, Junting, Golzar, Hossein, Jankhani, Sarah, Tang, Xiaowu (Shirley), Mekonnen, Tizazu H., Aghakhani, Amirreza, Shahsavan, Hamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542366/
https://www.ncbi.nlm.nih.gov/pubmed/37777525
http://dx.doi.org/10.1038/s41467-023-41874-7
_version_ 1785114080633159680
author Nasseri, Rasool
Bouzari, Negin
Huang, Junting
Golzar, Hossein
Jankhani, Sarah
Tang, Xiaowu (Shirley)
Mekonnen, Tizazu H.
Aghakhani, Amirreza
Shahsavan, Hamed
author_facet Nasseri, Rasool
Bouzari, Negin
Huang, Junting
Golzar, Hossein
Jankhani, Sarah
Tang, Xiaowu (Shirley)
Mekonnen, Tizazu H.
Aghakhani, Amirreza
Shahsavan, Hamed
author_sort Nasseri, Rasool
collection PubMed
description Stimuli-responsive hydrogels have garnered significant attention as a versatile class of soft actuators. Introducing anisotropic properties, and shape-change programmability to responsive hydrogels promises a host of opportunities in the development of soft robots. Herein we report the synthesis of pH-responsive hydrogel nanocomposites with predetermined microstructural anisotropy, shape-transformation, and self-healing. Our hydrogel nanocomposites are largely composed of zwitterionic monomers and asymmetric cellulose nanocrystals. While the zwitterionic nature of the network imparts both self-healing and cytocompatibility to our hydrogel nanocomposites, the shear-induced alignment of cellulose nanocrystals renders their anisotropic swelling and mechanical properties. Thanks to the self-healing properties, we utilized a cut-and-paste approach to program reversible, and complex deformation into our hydrogels. As a proof-of-concept, we demonstrated the transport of light cargo using tethered and untethered soft robots made from our hydrogels. We believe the proposed material system introduce a powerful toolbox for the development of future generations of biomedical soft robots.
format Online
Article
Text
id pubmed-10542366
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105423662023-10-03 Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics Nasseri, Rasool Bouzari, Negin Huang, Junting Golzar, Hossein Jankhani, Sarah Tang, Xiaowu (Shirley) Mekonnen, Tizazu H. Aghakhani, Amirreza Shahsavan, Hamed Nat Commun Article Stimuli-responsive hydrogels have garnered significant attention as a versatile class of soft actuators. Introducing anisotropic properties, and shape-change programmability to responsive hydrogels promises a host of opportunities in the development of soft robots. Herein we report the synthesis of pH-responsive hydrogel nanocomposites with predetermined microstructural anisotropy, shape-transformation, and self-healing. Our hydrogel nanocomposites are largely composed of zwitterionic monomers and asymmetric cellulose nanocrystals. While the zwitterionic nature of the network imparts both self-healing and cytocompatibility to our hydrogel nanocomposites, the shear-induced alignment of cellulose nanocrystals renders their anisotropic swelling and mechanical properties. Thanks to the self-healing properties, we utilized a cut-and-paste approach to program reversible, and complex deformation into our hydrogels. As a proof-of-concept, we demonstrated the transport of light cargo using tethered and untethered soft robots made from our hydrogels. We believe the proposed material system introduce a powerful toolbox for the development of future generations of biomedical soft robots. Nature Publishing Group UK 2023-09-30 /pmc/articles/PMC10542366/ /pubmed/37777525 http://dx.doi.org/10.1038/s41467-023-41874-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Nasseri, Rasool
Bouzari, Negin
Huang, Junting
Golzar, Hossein
Jankhani, Sarah
Tang, Xiaowu (Shirley)
Mekonnen, Tizazu H.
Aghakhani, Amirreza
Shahsavan, Hamed
Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics
title Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics
title_full Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics
title_fullStr Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics
title_full_unstemmed Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics
title_short Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics
title_sort programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542366/
https://www.ncbi.nlm.nih.gov/pubmed/37777525
http://dx.doi.org/10.1038/s41467-023-41874-7
work_keys_str_mv AT nasserirasool programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics
AT bouzarinegin programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics
AT huangjunting programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics
AT golzarhossein programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics
AT jankhanisarah programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics
AT tangxiaowushirley programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics
AT mekonnentizazuh programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics
AT aghakhaniamirreza programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics
AT shahsavanhamed programmablenanocompositesofcellulosenanocrystalsandzwitterionichydrogelsforsoftrobotics