Cargando…

A CK2 and SUMO-dependent, PML NB-involved regulatory mechanism controlling BLM ubiquitination and G-quadruplex resolution

The Boom syndrome helicase (BLM) unwinds a variety of DNA structures such as Guanine (G)-quadruplex. Here we reveal a role of RNF111/Arkadia and its paralog ARKL1, as well as Promyelocytic Leukemia Nuclear Bodies (PML NBs), in the regulation of ubiquitination and control of BLM protein levels. RNF11...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shichang, Atkinson, Erin, Paulucci-Holthauzen, Adriana, Wang, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542384/
https://www.ncbi.nlm.nih.gov/pubmed/37777511
http://dx.doi.org/10.1038/s41467-023-41705-9
Descripción
Sumario:The Boom syndrome helicase (BLM) unwinds a variety of DNA structures such as Guanine (G)-quadruplex. Here we reveal a role of RNF111/Arkadia and its paralog ARKL1, as well as Promyelocytic Leukemia Nuclear Bodies (PML NBs), in the regulation of ubiquitination and control of BLM protein levels. RNF111 exhibits a non-canonical SUMO targeted E3 ligase (STUBL) activity targeting BLM ubiquitination in PML NBs. ARKL1 promotes RNF111 localization to PML NBs through SUMO-interacting motif (SIM) interaction with SUMOylated RNF111, which is regulated by casein kinase 2 (CK2) phosphorylation of ARKL1 at a serine residue near the ARKL1 SIM domain. Upregulated BLM in ARKL1 or RNF111-deficient cells leads to a decrease of G-quadruplex levels in the nucleus. These results demonstrate that a CK2- and RNF111-ARKL1-dependent regulation of BLM in PML NBs plays a critical role in controlling BLM protein levels for the regulation of G-quadruplex.